A New Transfer Learning Method and Its Application on Rotating Machine Fault Diagnosis Under Variant Working Conditions

被引:72
|
作者
Qian, Weiwei [1 ]
Li, Shunming [1 ]
Wang, Jinrui [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Adaptive signal processing; artificial neural network; fault diagnosis; softmax regression; sparse filtering; transfer learning; FEATURE-EXTRACTION;
D O I
10.1109/ACCESS.2018.2880770
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Effective data-driven rotating machine fault diagnosis has recently been a research topic in the diagnosis and health management of machinery systems owing to the benefits, including safety guarantee, labor saving, and reliability improvement. However, in vast real-world applications, the classifier trained on one dataset will be extended to datasets under variant working conditions. Meanwhile, the deviation between datasets can be triggered easily by rotating speed oscillation and load variation, and it will highly degenerate the performance of machine learning-based fault diagnosis methods. Hence, a novel dataset distribution discrepancy measuring algorithm called high-order Kullback-Leibler (HKL) divergence is proposed. Based on HKL divergence and transfer learning, a new fault diagnosis network which is robust to working condition variation is constructed in this paper. In feature extraction, sparse filtering with HKL divergence is proposed to learn sharing and discriminative features of the source and target domains. In feature classification, HKL divergence is introduced into softmax regression to link the domain adaptation with health conditions. Its effectiveness is verified by experiments on a rolling bearing dataset and a gearbox dataset, which include 18 transfer learning cases. Furthermore, the asymmetrical performance phenomenon found in experiments is also analyzed.
引用
收藏
页码:69907 / 69917
页数:11
相关论文
共 50 条
  • [21] Mechanical fault diagnosis using deep contrastive transfer learning under variable working conditions
    Su H.
    Yang X.
    Xiang L.
    Hu A.-J.
    Li X.-Z.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2023, 36 (03): : 845 - 853
  • [22] Deep Transfer Learning-Based Fault Diagnosis for Gearbox under Complex Working Conditions
    Wan, Zitong
    Yang, Rui
    Huang, Mengjie
    SHOCK AND VIBRATION, 2020, 2020
  • [23] Fault Diagnosis of Rotary Machine Bearings Under Inconsistent Working Conditions
    Sohaib, Muhammad
    Kim, Jong-Myon
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (06) : 3334 - 3347
  • [24] A novel supervised sparse feature extraction method and its application on rotating machine fault diagnosis
    Qian, Weiwei
    Li, Shunming
    Wang, Jinrui
    Wu, Qijun
    NEUROCOMPUTING, 2018, 320 : 129 - 140
  • [25] A study on the fault diagnosis of rotating machine by machine learning
    Jeon, Hang-Kyu
    Kim, Ji-Sun
    Kim, Bong-Ju
    Kim, Won-Jin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2020, 39 (04): : 263 - 269
  • [26] A Novel Data-Driven Fault Feature Separation Method and Its Application on Intelligent Fault Diagnosis Under Variable Working Conditions
    Li, Shunming
    An, Zenghui
    Lu, Jiantao
    IEEE ACCESS, 2020, 8 (08): : 113702 - 113712
  • [27] Fault diagnosis method for bearings under variable working conditions based on transfer relation network
    Zhang, Ran
    Zhao, Zhihong
    Tao, Xu
    Yang, Shaopu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [28] Adaptation Regularization Based on Transfer Learning for Fault Diagnosis of Rotating Machinery Under Multiple Operating Conditions
    Chen, Renxiang
    Zhu, Yuqing
    Yang, Lixia
    Hu, Xiaolin
    Chen, Guorui
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10655 - 10662
  • [29] A Hybrid Transfer Learning Method for Fault Diagnosis of Machinery under Variable Operating Conditions
    Du, Zhaojun
    Yang, Bin
    Lei, Yaguo
    Li, Xiwei
    Li, Naipeng
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [30] Deep Transfer Learning Method and Its Application in Grinding Chatter Marks Identification under Variable Working Conditions
    Liu J.
    Cao H.
    Yan P.
    Ji W.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (16): : 128 - 136