Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil

被引:73
|
作者
Wu, Lei [1 ,2 ,3 ]
Peng, Mengling [1 ,3 ,4 ]
Qiao, Shanshan [1 ,3 ,4 ]
Ma, Xiao-yi [1 ,3 ]
机构
[1] Northwest A&F Univ, Key Lab Agr Soil & Water Engn Arid & Semiarid Are, Minist Educ, Yangling 712100, Shaanxi, Peoples R China
[2] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[3] Northwest A&F Univ, Coll Water Resources & Architectural Engn, Taicheng Rd, Yangling 712100, Shaanxi, Peoples R China
[4] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Bare loess soil; Runoff yield; Sediment yield; Rainfall intensity; Slope gradient; Artificial simulated rainfall experiment; NONPOINT-SOURCE POLLUTION; SIMULATED RAINFALL; SOURCE NITROGEN; EROSION; MODEL; SCALE; PLATEAU; CHINA; BASIN; RIVER;
D O I
10.1007/s11356-017-0713-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5 degrees to 25 degrees, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.
引用
收藏
页码:3480 / 3487
页数:8
相关论文
共 50 条
  • [41] Effects of Embedded Gravel or Gravel Mulching in Southern Red Soil on Slope Sediment Yield and Runoff
    Wang, Hui
    Lu, Debao
    Wang, Qian
    Shan, Chengju
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2021, 30 (01): : 401 - 408
  • [42] Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall
    Wang, Linhua
    Dalabay, Nurmolda
    Lu, Pei
    Wu, Faqi
    SOIL & TILLAGE RESEARCH, 2017, 166 : 147 - 156
  • [43] Effects of anecic earthworms on runoff and erosion on the slope with soil from the Loess Plateau under a rainfall simulation experiment
    Wen, Shuhai
    Wang, Jiao
    Li, Yanpei
    Shao, Ming'an
    AGRICULTURAL WATER MANAGEMENT, 2022, 259
  • [44] Effects of rainfall and slope on runoff, soil erosion and rill development: an experimental study using two loess soils
    Fang, Haiyan
    Sun, Liying
    Tang, Zhenghong
    HYDROLOGICAL PROCESSES, 2015, 29 (11) : 2649 - 2658
  • [45] Impacts of Rainfall Characteristics and Slope on Splash Detachment and Transport of Loess Soil
    Liu, June
    Du, Fangyue
    Cheng, Xike
    Qi, Xiaoqian
    Wang, Ning
    Shen, Nan
    Ma, Chunyan
    Wang, Zhanli
    LAND, 2024, 13 (02)
  • [46] Effects of Bothriochloa ischaemum Characteristics Induced by Nitrogen Addition on the Process of Slope Runoff and Sediment Yield
    Li, Panpan
    Li, Binbin
    Wang, Jianfang
    Liu, Guobin
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2021, 30 (01): : 215 - 226
  • [47] Transport of phosphorus in runoff and sediment with surface runoff from bare purple soil during indoor simulated rainfall
    MA Xiao
    YANG Jie
    ZHOU Xiang-jun
    WU Hong-tao
    XIONG Qiao
    LI Ye
    Journal of Mountain Science, 2022, 19 (08) : 2333 - 2345
  • [48] Transport of phosphorus in runoff and sediment with surface runoff from bare purple soil during indoor simulated rainfall
    Xiao Ma
    Jie Yang
    Xiang-jun Zhou
    Hong-tao Wu
    Qiao Xiong
    Ye Li
    Journal of Mountain Science, 2022, 19 : 2333 - 2345
  • [49] Characteristics of runoff on biological soil crust slope in different rainfall durations
    Yang K.
    Zhao J.
    Zhao Y.
    Zhang Z.
    Sun H.
    Gu K.
    Guo Y.
    Wang S.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (23): : 135 - 141
  • [50] Transport of phosphorus in runoff and sediment with surface runoff from bare purple soil during indoor simulated rainfall
    Ma Xiao
    Yang Jie
    Zhou Xiang-jun
    Wu Hong-tao
    Xiong Qiao
    Li Ye
    JOURNAL OF MOUNTAIN SCIENCE, 2022, 19 (08) : 2333 - 2345