A Note on the Sobolev and Gagliardo-Nirenberg Inequality when p > N

被引:4
|
作者
Porretta, Alessio [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, Rome 00133, Italy
关键词
Sobolev spaces; Gagliardo Nirenberg Inequality; Discrete Sobolev Inequalities;
D O I
10.1515/ans-2020-2086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the Sobolev space W-1,W-P(R-N) is embedded into LNP/(N-P)(R-N) if p < N and into L-infinity(R-N) if p > N. There is usually a discontinuity in the proof of those two different embeddings since, for p > N, the estimate parallel to u parallel to(infinity) <= C parallel to Du parallel to(N/P)(p)parallel to u parallel to(1-N/p)(p) is commonly obtained together with an estimate of the Holder norm. In this note, we give a proof of the L-infinity-embedding which only follows by an iteration of the Sobolev-Gagliardo-Nirenberg estimate parallel to u parallel to(N/(N-1)) <= C parallel to Du parallel to(1). This kind of proof has the advantage to be easily extended to anisotropic cases and immediately exported to the case of discrete Lebesgue and Sobolev spaces; we give sample results in case of finite differences and finite volumes schemes.
引用
收藏
页码:361 / 371
页数:11
相关论文
共 50 条
  • [21] Vector-valued Sobolev spaces and Gagliardo-Nirenberg inequalities
    Schmeisser, HJ
    Sickel, W
    Nonlinear Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HERBERT AMANN, MICHEL CHIPOT AND JOACHIM ESCHER, 2005, 64 : 463 - 472
  • [22] Sharp constant of an improved Gagliardo-Nirenberg inequality and its application
    Chen, Jianqing
    Guo, Boling
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (02) : 341 - 354
  • [23] On a Generalized Gagliardo-Nirenberg Inequality with Radial Symmetry and Decaying Potentials
    Tarulli, Mirko
    Venkov, George
    MATHEMATICS, 2024, 12 (01)
  • [24] Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces
    Kopaliani, Tengiz
    Chelidze, George
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) : 232 - 236
  • [25] Optimal Gagliardo-Nirenberg interpolation inequality for rearrangement invariant spaces
    Lesnik, Karol
    Roskovec, Tomas
    Soudsky, Filip
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (04)
  • [26] NONLOCAL GAGLIARDO-NIRENBERG-SOBOLEV TYPE INEQUALITY
    Foghem, Guy
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (01) : 55 - 83
  • [27] Gagliardo-Nirenberg-Sobolev Inequality: An Induction Proof
    Liu, Shibo
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (09): : 859 - 861
  • [28] A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities
    Cordero-Erausquin, D
    Nazaret, B
    Villani, C
    ADVANCES IN MATHEMATICS, 2004, 182 (02) : 307 - 332
  • [29] SHARP GAGLIARDO-NIRENBERG INEQUALITIES IN FRACTIONAL COULOMB-SOBOLEV SPACES
    Bellazzini, Jacopo
    Ghimenti, Marco
    Mercuri, Carlo
    Moroz, Vitaly
    Van Schaftingen, Jean
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (11) : 8285 - 8310
  • [30] Gagliardo-Nirenberg Inequality for rearrangement-invariant Banach function spaces
    Fiorenza, Alberto
    Formica, Maria Rosaria
    Roskovec, Tomas
    Soudsky, Filip
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2019, 30 (04) : 847 - 864