Broadband reflective lens in visible band based on aluminum plasmonic metasurface

被引:12
|
作者
Lu, D. Y. [1 ,2 ]
Cao, X. [1 ,2 ]
Wang, K. J. [1 ,2 ]
He, M. D. [1 ,2 ]
Wang, D. [1 ,2 ]
Li, J. [1 ,2 ]
Zhang, X. M. [1 ,2 ]
Liu, L. [1 ,2 ]
Luo, J. H. [1 ,2 ]
Li, Z. [1 ,2 ]
Liu, J. Q. [3 ]
Xu, L. [4 ]
Hu, W. D. [5 ]
Chen, X. [5 ]
机构
[1] Cent South Univ Forestry & Technol, Inst Math & Phys, Changsha 410004, Hunan, Peoples R China
[2] Cent South Univ Forestry & Technol, Hunan Prov Key Lab Mat Surface & Interface Sci &, Changsha 410004, Hunan, Peoples R China
[3] Jiujiang Univ, Coll Sci, Jiujiang 332005, Peoples R China
[4] Jiangxi Univ Sci & Technol, Sch Energy & Mech Engn, Nanchang 330013, Jiangxi, Peoples R China
[5] Chinese Acad Sci, Natl Lab Infrared Phys, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
来源
OPTICS EXPRESS | 2018年 / 26卷 / 26期
基金
中国国家自然科学基金;
关键词
HIGH-EFFICIENCY; GRADIENT; WAVELENGTHS; MICROLENSES; WAVES;
D O I
10.1364/OE.26.034956
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a flat optical lens based on plasmonic reflectarray metasurface, which consists of a planar array of hyperbolic-shaped aluminum (Al) nanoantenna separated from an Al ground plane by a SiO2 spacer. The gradual change in the width of the Al nanoantenna enables unique broadband (400-700 nm) to focus on the visible band because of its hyperbolic reflection-phase profile. The focal length of metalens is quickly decreased with the increase of wavelength in the short wavelength region (400-550 nm), compensating the chromatic aberration in traditional lenses. In long wavelength region (550-700 mn), the focal length has only a slight change, thereby minimizing chromatic aberration. Funhermore, the proposed metalens creates a small focal spot beyond diffraction limit, while maintaining high focusing efficiency. Our method of simple and anisotropic nanoantenna is used to realize wide phase tuning range offers a novel strategy to design braodband metalens, and our inetalens has widespread applications in compact camera, telescope, and microscope. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:34956 / 34964
页数:9
相关论文
共 50 条
  • [21] Broadband plasmonic metasurface for spin-selective hologram in near-infrared band
    Yang, Jinxin
    Zhou, Zekai
    Song, Zhengyong
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (04)
  • [22] Dual-band reflective polarization converter based on metasurface
    LIN Xiaofang
    ZHANG Xu
    CHANG Ming
    LI Wenqiang
    YU Siyang
    ZHANG Maolong
    Optoelectronics Letters, 2023, 19 (12) : 716 - 720
  • [23] Dual-band reflective polarization converter based on metasurface
    Lin, Xiaofang
    Zhang, Xu
    Chang, Ming
    Li, Wenqiang
    Yu, Siyang
    Zhang, Maolong
    OPTOELECTRONICS LETTERS, 2023, 19 (12) : 716 - 720
  • [24] Three-Band Polarization Converter Based on Reflective Metasurface
    Liu, Xiaobo
    Zhang, Jingsi
    Li, Wei
    Lu, Rui
    Li, Lumei
    Xu, Zhuo
    Zhang, Anxue
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 924 - 927
  • [25] Broadband bifunctional Luneburg–Fisheye lens based on anisotropic metasurface
    Jiaqing Chen
    Yongjiu Zhao
    Lei Xing
    Zheng He
    Luyang Sun
    Scientific Reports, 10
  • [26] Dual-band reflective polarization converter based on metasurface
    Xiaofang Lin
    Xu Zhang
    Ming Chang
    Wenqiang Li
    Siyang Yu
    Maolong Zhang
    Optoelectronics Letters, 2023, 19 : 716 - 720
  • [27] SOI Based metasurface for broadband perfect reflection in visible spectrum
    Ankit
    Kishor, Kamal
    Sinha, Ravindra Kumar
    JOURNAL OF OPTICS, 2024, 26 (04)
  • [28] Achromatic metasurface lens at visible wavelengths
    Li, Guixin
    SCIENCE BULLETIN, 2018, 63 (06) : 333 - 335
  • [29] Achromatic metasurface lens at visible wavelengths
    Guixin Li
    ScienceBulletin, 2018, 63 (06) : 333 - 335
  • [30] Flexible broadband polarization converter based on metasurface at microwave band
    王奇
    孔祥鲲
    严祥熙
    徐岩
    刘少斌
    莫锦军
    刘晓春
    Chinese Physics B, 2019, 28 (07) : 247 - 255