On the total mean curvature of piecewise smooth surfaces under infinitesimal bending

被引:3
|
作者
Velimirovic, Ljubica S. [1 ]
Ciric, Marija S. [1 ]
机构
[1] Fac Sci & Math, Nish 18000, Serbia
关键词
Piecewise smooth surface; Infinitesimal bending; Total mean curvature; Variation;
D O I
10.1016/j.aml.2011.03.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variation of the total mean curvature of piecewise smooth surfaces in Euclidean 3-spaces under infinitesimal bending is discussed and reduced to a sum of line integrals of a rotation vector field. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1515 / 1519
页数:5
相关论文
共 50 条
  • [41] Geodesic and Curvature of Piecewise Flat Finsler Surfaces
    Ming Xu
    Shaoqiang Deng
    The Journal of Geometric Analysis, 2018, 28 : 1341 - 1372
  • [42] The infinitesimal phase response curves of oscillators in piecewise smooth dynamical systems
    Park, Y.
    Shaw, K. M.
    Chiel, H. J.
    Thomas, P. J.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2018, 29 (05) : 905 - 940
  • [44] Constant Mean Curvature Surfaces in M2 (c) x R and Finite Total Curvature
    Batista, Marcio
    Cavalcante, Marcos P.
    Fetcu, Dorel
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 3071 - 3084
  • [45] On the Minimization of Total Mean Curvature
    J. Dalphin
    A. Henrot
    S. Masnou
    T. Takahashi
    The Journal of Geometric Analysis, 2016, 26 : 2729 - 2750
  • [46] On the Minimization of Total Mean Curvature
    Dalphin, J.
    Henrot, A.
    Masnou, S.
    Takahashi, T.
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (04) : 2729 - 2750
  • [47] A generalization of the total mean curvature
    Charytanowicz, Katarzyna
    Cieslak, Waldemar
    Mozgawa, Witold
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2021, 146 : 223 - 231
  • [48] On the maximal mean curvature of a smooth surface
    Ferone, Vincenzo
    Nitsch, Carlo
    Trombetti, Cristina
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (09) : 891 - 895
  • [49] Errata: The surfaces capable of division into infinitesimal squares by their curves of Curvature
    Udo Hertrich-Jeromin
    Robert Haas
    The Mathematical Intelligencer, 2002, 24 (3) : 4 - 4
  • [50] On the Minimization of the Willmore Energy Under a Constraint on Total Mean Curvature and Area
    Scharrer, Christian
    West, Alexander
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2025, 249 (02)