Statistical Properties of the 1D Space Fractional Klein-Gordon Oscillator

被引:3
|
作者
Korichi, Nabil [1 ]
Boumali, Abdelmalek [1 ]
Chargui, Yassine [2 ]
机构
[1] Univ Larbi Tebessi Tebessa, Lab Phys Appl & Theor, Tebessa, Algeria
[2] Qassim Univ, Coll Sci & Arts Ar Rass, Dept Phys, POB 53, Ar Rass 51921, Saudi Arabia
关键词
Fractional formalism; Klein-Gordon oscillator (KGO); Semiclassical approximation;
D O I
10.1007/s10909-021-02638-z
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we investigate the quantum fractional of the one-dimensional Klein-Gordon oscillator. By using a semiclassical approximation, the energy eigenvalues have been determined for oscillators. The obtained results show a remarkable influence of the fractional parameter alpha on the energy eigenvalues. By considering a unique energy spectrum, we present a simple numerical computation of the thermal properties of a defined energy spectrum of a system. The Euler-Maclaurin formula has been used to calculate the partition function and therefore the associated thermodynamics quantities. Besides this, we also calculate the eigenfunctions of our problem. The influence of the parameter alpha on these functions as well as the probability of density has been tested.
引用
收藏
页码:32 / 50
页数:19
相关论文
共 50 条
  • [31] Klein-Gordon Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field
    Xiao, Yongjun
    Long, Zhengwen
    Cai, Shaohong
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (10) : 3105 - 3111
  • [32] Fractional Klein-Gordon equation on AdS2+1
    Basteiro, Pablo
    Elfert, Janine
    Erdmenger, Johanna
    Hinrichsen, Haye
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (36)
  • [33] Klein-Gordon oscillator in a global monopole space-time with rainbow gravity
    de Montigny, Marc
    Pinfold, James
    Zare, Soroush
    Hassanabadi, Hassan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 137 (01):
  • [34] The Klein-Gordon oscillator and the proper-time formalism in a Rigged Hilbert Space
    Grunfeld, AG
    Rocca, MC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1998, 113 (11): : 1351 - 1359
  • [35] Klein-Gordon Oscillator in Noncommutative Phase Space Under a Uniform Magnetic Field
    Yongjun Xiao
    Zhengwen Long
    Shaohong Cai
    International Journal of Theoretical Physics, 2011, 50
  • [36] Fractional Klein-Gordon equation with singular mass
    Altybay, Arshyn
    Ruzhansky, Michael
    Sebih, Mohammed Elamine
    Tokmagambetov, Niyaz
    CHAOS SOLITONS & FRACTALS, 2021, 143
  • [37] Analytical solutions for the fractional Klein-Gordon equation
    Kheiri, Hosseni
    Shahi, Samane
    Mojaver, Aida
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2014, 2 (02): : 99 - 114
  • [38] Numerical analysis for Klein-Gordon equation with time-space fractional derivatives
    Zhang, Jun
    Wang, JinRong
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3689 - 3700
  • [39] An Efficient Computational Method for the Time-Space Fractional Klein-Gordon Equation
    Singh, Harendra
    Kumar, Devendra
    Pandey, Ram K.
    FRONTIERS IN PHYSICS, 2020, 8
  • [40] STABILIZATION OF THE KLEIN-GORDON EQUATION STATISTICAL SOLUTIONS
    KOPYLOVA, EA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1986, (02): : 92 - 95