Statistical Properties of the 1D Space Fractional Klein-Gordon Oscillator

被引:3
|
作者
Korichi, Nabil [1 ]
Boumali, Abdelmalek [1 ]
Chargui, Yassine [2 ]
机构
[1] Univ Larbi Tebessi Tebessa, Lab Phys Appl & Theor, Tebessa, Algeria
[2] Qassim Univ, Coll Sci & Arts Ar Rass, Dept Phys, POB 53, Ar Rass 51921, Saudi Arabia
关键词
Fractional formalism; Klein-Gordon oscillator (KGO); Semiclassical approximation;
D O I
10.1007/s10909-021-02638-z
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we investigate the quantum fractional of the one-dimensional Klein-Gordon oscillator. By using a semiclassical approximation, the energy eigenvalues have been determined for oscillators. The obtained results show a remarkable influence of the fractional parameter alpha on the energy eigenvalues. By considering a unique energy spectrum, we present a simple numerical computation of the thermal properties of a defined energy spectrum of a system. The Euler-Maclaurin formula has been used to calculate the partition function and therefore the associated thermodynamics quantities. Besides this, we also calculate the eigenfunctions of our problem. The influence of the parameter alpha on these functions as well as the probability of density has been tested.
引用
收藏
页码:32 / 50
页数:19
相关论文
共 50 条
  • [1] Statistical Properties of the 1D Space Fractional Klein–Gordon Oscillator
    Nabil Korichi
    Abdelmalek Boumali
    Yassine Chargui
    Journal of Low Temperature Physics, 2022, 206 : 32 - 50
  • [2] The statistical properties of Klein-Gordon oscillator in noncommutative space
    Hassanabadi, H.
    Hosseini, S. S.
    Boumali, A.
    Zarrinkamar, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
  • [3] On the 1D Coulomb Klein-Gordon equation
    Barton, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : 1011 - 1031
  • [4] On the energy decay rates for the 1D damped fractional Klein-Gordon equation
    Malhi, Satbir
    Stanislavova, Milena
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (02) : 363 - 375
  • [5] Klein-Gordon Oscillator In Dynamical Noncommutative Space
    Haouam, Ilyas
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (07)
  • [6] THE KLEIN-GORDON OSCILLATOR
    BRUCE, S
    MINNING, P
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1993, 106 (05): : 711 - 713
  • [7] Weighted Energy Decay for 1D Klein-Gordon Equation
    Komech, A. I.
    Kopylova, E. A.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (02) : 353 - 374
  • [8] On 1d Quadratic Klein-Gordon Equations with a Potential and Symmetries
    Germain, Pierre
    Pusateri, Fabio
    Zhang, Katherine Zhiyuan
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (02)
  • [9] On the Supersymmetry of the Klein-Gordon Oscillator
    Junker, Georg
    SYMMETRY-BASEL, 2021, 13 (05):
  • [10] THE KLEIN-GORDON OSCILLATOR - COMMENT
    DVOEGLAZOV, VV
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1994, 107 (08): : 1413 - 1417