μ-Conotoxins Targeting the Human Voltage-Gated Sodium Channel Subtype NaV1.7

被引:4
|
作者
McMahon, Kirsten L. [1 ]
Tran, Hue N. T. [1 ]
Deuis, Jennifer R. [1 ]
Craik, David J. [1 ]
Vetter, Irina [1 ,2 ]
Schroeder, Christina, I [1 ,3 ,4 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Pharm, Woolloongabba, Qld 4102, Australia
[3] NCI, Ctr Canc Res, NIH, Frederick, MD 21702 USA
[4] Genentech Inc, Dept Peptide Therapeut, 1 DNA Way, San Francisco, CA 94080 USA
基金
英国医学研究理事会; 澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
mu-conotoxins; voltage-gated sodium channels; structure-activity relationships; disulfide-rich peptides; Cys frameworks; POTENT INHIBITOR; SKELETAL-MUSCLE; MOLECULAR-BASIS; AMINO-ACIDS; BLOCK; KIIIA; DESIGN; CONOPEPTIDE; SPECIFICITY; PEPTIDES;
D O I
10.3390/toxins14090600
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
mu-Conotoxins are small, potent, peptide voltage-gated sodium (Na-V) channel inhibitors characterised by a conserved cysteine framework. Despite promising in vivo studies indicating analgesic potential of these compounds, selectivity towards the therapeutically relevant subtype Na(V)1.7 has so far been limited. We recently identified a novel mu-conotoxin, SxIIIC, which potently inhibits human Na(V)1.7 (hNa(V)1.7). SxIIIC has high sequence homology with other mu-conotoxins, including SmIIIA and KIIIA, yet shows different Na-V channel selectivity for mammalian subtypes. Here, we evaluated and compared the inhibitory potency of mu-conotoxins SxIIIC, SmIIIA and KIIIA at hNa(V) channels by whole-cell patch-clamp electrophysiology and discovered that these three closely related mu-conotoxins display unique selectivity profiles with significant variations in inhibitory potency at hNa(V)1.7. Analysis of other mu-conotoxins at hNa(V)1.7 shows that only a limited number are capable of inhibition at this subtype and that differences between the number of residues in loop 3 appear to influence the ability of mu-conotoxins to inhibit hNa(V)1.7. Through mutagenesis studies, we confirmed that charged residues in this region also affect the selectivity for hNa(V)1.4. Comparison of mu-conotoxin NMR solution structures identified differences that may contribute to the variance in hNa(V)1.7 inhibition and validated the role of the loop 1 extension in SxIIIC for improving potency at hNa(V)1.7, when compared to KIIIA. This work could assist in designing mu-conotoxin derivatives specific for hNa(V)1.7.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Functional Studies of Interaction Between Huwentoxin-IV and Voltage-Gated Sodium Channel Nav1.7
    Shih, Amy Y.
    Bembenek, Scott
    Minassian, Natali
    Neff, Robert
    Liu, Yi
    Flinspach, Mack
    Edavettal, Suzanne
    Wu, Nyantsz
    Maher, Michael
    Wickenden, Alan
    Mirzadegan, Taraneh
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 324A - 324A
  • [22] The voltage-gated sodium channel NaV1.7 underlies endometriosis-associated chronic pelvic pain
    Castro, Joel
    Maddern, Jessica
    Chow, Chun Yuen
    Tran, Poanna
    Vetter, Irina
    King, Glenn F.
    Brierley, Stuart M.
    JOURNAL OF NEUROCHEMISTRY, 2024, 168 (11) : 3760 - 3776
  • [23] Function and role of voltage-gated sodium channel NaV1.7 expressed in aortic smooth muscle cells
    Meguro, Kentaro
    Iida, Haruko
    Takano, Haruhito
    Morita, Toshihiro
    Sata, Masataka
    Nagai, Ryozo
    Nakajima, Toshiaki
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2009, 296 (01): : H211 - H219
  • [24] Function and role of voltage-gated sodium channel (NaV1.7) expressed in aortic smooth muscle cells
    Meguro, K.
    Nakajima, T.
    Iida, H.
    Morita, T.
    Sata, M.
    Nagai, R.
    JOURNAL OF HYPERTENSION, 2008, 26 : S170 - S170
  • [25] The discovery of benzenesulfonamide-based potent and selective inhibitors of voltage-gated sodium channel Nav1.7
    Sun, Shaoyi
    Jia, Qi
    Zenova, Alla Y.
    Chafeev, Mikhail
    Zhang, Zaihui
    Lin, Sophia
    Kwan, Rainbow
    Grimwood, Mike E.
    Chowdhury, Sultan
    Young, Clint
    Cohen, Charles J.
    Oballa, Renata M.
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2014, 24 (18) : 4397 - 4401
  • [26] Tarantula Toxin SGTx-1 alters Gating Kinetics of Human Voltage-Gated Sodium Channel Nav1.7
    Kimball, Ian H.
    Nguyen, Phuong T.
    Yam, Jenny
    Pressly, Brandon
    York, Royce
    Sack, Jon T.
    Yarov-Yarovoy, Vladimir
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 240A - 240A
  • [27] Regulation of the voltage-gated sodium channel Nav1.7 by ubiquitin ligase Nedd4-2
    Laedermann, Cedric
    Cachemaille, Matthieu
    Abriel, Hugues
    Decosterd, Isabelle
    SWISS MEDICAL WEEKLY, 2010, 140 : 3S - 4S
  • [28] Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes
    Toru Yokoyama
    Kouichiro Minami
    Yuka Sudo
    Takafumi Horishita
    Junichi Ogata
    Toshihiko Yanagita
    Yasuhito Uezono
    Journal of Anesthesia, 2011, 25
  • [29] Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes
    Yokoyama, Toru
    Minami, Kouichiro
    Sudo, Yuka
    Horishita, Takafumi
    Ogata, Junichi
    Yanagita, Toshihiko
    Uezono, Yasuhito
    JOURNAL OF ANESTHESIA, 2011, 25 (04) : 609 - 613
  • [30] Calmodulin Recognition of Voltage-Gated Sodium Channels NaV1.1, NaV1.4 and NaV1.7
    Isbell, Holly M.
    Kilpatrick, Adina M.
    Lin, Zesen
    Mahling, Ryan
    Shea, Madeline A.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 635A - 636A