Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts

被引:53
|
作者
Pan, Kuan Lun [1 ,2 ]
Young, Chyi Woei [3 ]
Pan, Guan Ting [4 ]
Chang, Moo Been [1 ]
机构
[1] Natl Cent Univ, Grad Inst Environm Engn, Taoyuan, Taiwan
[2] Ind Technol Res Inst, Green Energy & Environm Inst, Hsinchu, Taiwan
[3] China Steel Corp CSC, New Mat R&D Dept, Kaohsiung, Taiwan
[4] Natl Taipei Univ Technol, Dept Chem Engn, Taipei, Taiwan
关键词
Catalysisnitrogen oxides (NOx); Carbon monoxide (CO); Selective catalytic reduction (SCR); NO reduction with CO; LOW-TEMPERATURE; NITRIC-OXIDE; PLUS CO; SELECTIVE REDUCTION; REACTION-MECHANISM; NH3-SCR ACTIVITY; ACTIVE-SITES; SURFACE; SO2; SCR;
D O I
10.1016/j.cattod.2019.08.038
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Various Cu-based and Mn-based catalysts are prepared and evaluated for the reduction of NO with CO process. Cu-Ce-Fe-Co/TiO2 and Mn-Ce-Fe-Co/TiO2 show the best catalytic performance for the reduction of NO with CO process among Cu-based and Mn-based catalysts, respectively. The highest conversions of NO and CO achieved with Cu-Ce-Fe-Co/TiO2 reach 100% and 79%, respectively, with the operating temperature of 250 degrees C, while 100% and 70% are achieved with Mn-Ce-Fe-Co/TiO2 for the gas streams containing 200 ppm NO and 200 ppm CO. The results reveal that both modified catalysts (e.g., Cu-Ce-Fe-Co/TiO2 and Mn-Ce-Fe-Co/TiO2) have good activities for CO+ NO reaction. Overall, Cu-Ce-Fe-Co/TiO2 has better tolerance for O-2, SO2 and H2O(g) than MnCe-Fe-Co/TiO2. Good catalytic performance of Cu-Ce-Fe-Co/TiO2 toward NO reduction is attributed to its good surface properties, i.e., reducibility, oxygen mobility and more oxygen vacancies. Additionally, the apparent activation energy is calculated as 54.2 kJ/mol is calculated using Mars-Van Krevelen model for reduction of NO with CO process with Cu-Ce-Fe-Co/TiO2 as catalyst. Further, active component Cu-Ce-Fe-Co is loaded on activated carbon (AC) to form Cu-Ce-Fe-Co/AC, which is applied as catalyst for durability test. The results indicate that NO conversion achieved with Cu-Ce-Fe-Co/AC maintains at 100% during 240 min operation period, even in the simultaneous presence of O-2, H2O(g) and SO2. Overall, this study demonstrates that Cu-based catalyst is promising for the reduction of NO with CO process.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [21] Research Progress in the Composition and Performance of Mn-Based Low-Temperature Selective Catalytic Reduction Catalysts
    Yang, Yuming
    Bian, Xue
    Xie, Feng
    Bai, Yuting
    Wang, Jing
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [22] Tuning activity and selectivity of Cu-based catalysts toward CO2 reduction
    Kattel, Shyam
    Chen, Jingguang
    Rodriguez, Jose
    Liu, Ping
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [23] Experimental study of ammonia storage characteristics of selective catalytic reduction for diesel engine based on Cu-based catalysts
    Zhang, Zhiqing
    Zhao, Ziheng
    Tan, Dongli
    Zhang, Bin
    Lu, Kai
    Ye, Yanshuai
    Mao, Chengfang
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 190 : 368 - 380
  • [24] Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction
    Jia, Yufei
    Li, Fei
    Fan, Ke
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2024, 43 (03)
  • [25] Understanding oxidation state of Cu-based catalysts for electrocatalytic CO2 reduction
    Zhu, Ping
    Qin, Yuan-Chu
    Cai, Xin-Hao
    Wang, Wen-Min
    Zhou, Ying
    Zhou, Lin-Lin
    Liu, Peng-Hui
    Peng, Lu
    Wang, Wen-Long
    Wu, Qian-Yuan
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 218 : 1 - 24
  • [26] Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NOx with hydrocarbons
    Ning S.
    Su Y.
    Yang H.
    Wen N.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (03): : 1308 - 1320
  • [27] Cu-based heterojunction catalysts for electrocatalytic nitrate reduction to ammonia
    Huang, Yitao
    Guan, Minghao
    Pei, Jiyuan
    Song, Yongyi
    Wu, Tao
    Hou, Shuandi
    Lu, Anhui
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2024, 52 (12): : 1857 - 1864
  • [28] Cu-based materials as co-catalysts for photocatalytic CO2 reduction: A mini review
    Jing, Ya-Nan
    Yin, Xing-Liang
    Li, Lei -Lei
    MATERIALS TODAY SUSTAINABILITY, 2024, 26
  • [29] Sulfur and Water Resistance of Mn-Based Catalysts for Low-Temperature Selective Catalytic Reduction of NOx: A Review
    Gao, Chen
    Shi, Jian-Wen
    Fan, Zhaoyang
    Gao, Ge
    Niu, Chunming
    CATALYSTS, 2018, 8 (01):
  • [30] The effects of Mn-based catalysts on the selective catalytic reduction of NOx with NH3 at low temperature: A review
    Zhang, Zhiqing
    Li, Jiangtao
    Tian, Jie
    Zhong, Yunhao
    Zou, Zhi
    Dong, Rui
    Gao, Sheng
    Xu, Wubin
    Tan, Dongli
    FUEL PROCESSING TECHNOLOGY, 2022, 230