Assessing the impacts of climate change and dams on floodplain inundation and wetland connectivity in the wet-dry tropics of northern Australia

被引:65
|
作者
Karim, Fazlul [1 ]
Dutta, Dushmanta [1 ]
Marvanek, Steve [2 ]
Petheram, Cuan [1 ]
Ticehurst, Catherine [1 ]
Lerata, Julien [1 ]
Kim, Shaun [1 ]
Yang, Ang [1 ]
机构
[1] CSIRO Land & Water, Canberra, ACT 2601, Australia
[2] CSIRO Land & Water, Glen Osmond, SA 5064, Australia
关键词
Connectivity; Floods; Hydrodynamic modelling; MIKE; 21; MODIS; Ecology; SEA-LEVEL RISE; HYDROLOGICAL CONNECTIVITY; RIVER; TOOL; ASSEMBLAGES; ECOSYSTEMS; SIMULATION; PATTERNS; RUNOFF; MODEL;
D O I
10.1016/j.jhydrol.2014.12.005
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Floodplain wetlands and their hydrological connectivity with main river channels in the Australian wetdry tropics are under increasing pressure from global climate change and water resource development, and there is a need for modelling tools to estimate the time dynamics of connectivity. This paper describes an integrated modelling framework combining conceptual rainfall-runoff modelling, river system modelling and hydrodynamic (HD) modelling to estimate hydrological connectivity between wetlands and rivers in the Flinders and Gilbert river catchments in northern Australia. Three historical flood events ranging from a mean annual flood to a 35-year return period flood were investigated using a two dimensional HD model (MIKE 21). Inflows from upstream catchments were estimated using a river network model. Local runoff within the HD modelling domain was simulated using the Sacramento rainfall-runoff model. The Shuttle Radar Topography Mission (SRTM) derived 30 m DEM was used to reproduce floodplain topography, stream networks and wetlands in the HD model. The HD model was calibrated using stream gauge data and inundation maps derived from satellite (MODIS: MODerate resolution Imaging Spectroradiometer) imagery. An algorithm was developed to combine the simulated water heights with the DEM to quantify inundation and flow connection between wetlands and rivers. The connectivity of 18 ecologically important wetlands on the Flinders floodplain and 7 on the Gilbert floodplain were quantified. The impacts of climate change and water resource development on connectivity to individual wetlands were assessed under a projected dry climate (2nd driest of 15 GCMs), wet climate (2nd wettest of 15 GCMs) and dam conditions. The results indicate that changes in rainfall under a wetter and drier future climate could have large impacts on area, duration and frequency of inundation and connectivity. Topographic relief, river bank elevation and flood magnitude were found to be the key factors contributing to the level of connectivity. Under a wetter future climate the average duration of connection of wetlands to the main river channel increased by 7% and under a drier climate it decreased by 18%. Construction of a 248 GL dam in the Flinders catchment and two (498 and 271 GL capacity) in the Gilbert catchment could reduce the average duration of connectivity by 1% and 2% in the Flinders and Gilbert catchments respectively. This information is potentially useful to future studies on the flood-dependent ecology in this region. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 94
页数:15
相关论文
共 38 条
  • [21] A study of soil erosion rates using 239Pu, in the wet-dry tropics of northern Australia
    Lal, R.
    Fifield, L. K.
    Tims, S. G.
    Wasson, R. J.
    Howe, D.
    JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2020, 211
  • [22] Resource partitioning among five sympatric species of freshwater turtles from the wet-dry tropics of northern Australia
    Welsh, Michael A.
    Doody, J. Sean
    Georges, Arthur
    WILDLIFE RESEARCH, 2017, 44 (03) : 219 - 229
  • [23] Comparative water use by the riparian trees Melaleuca argentea and Corymbia bella in the wet-dry tropics of northern Australia
    O'Grady, AP
    Eamus, D
    Cook, PG
    Lamontagne, S
    TREE PHYSIOLOGY, 2006, 26 (02) : 219 - 228
  • [24] Connectivity, habitat, and flow regime influence fish assemblage structure: Implications for environmental water management in a perennial river of the wet-dry tropics of northern Australia
    Pusey, Bradley J.
    Douglas, Michael
    Olden, Julian D.
    Jackson, Sue
    Allsop, Quentin
    Kennard, Mark J.
    AQUATIC CONSERVATION-MARINE AND FRESHWATER ECOSYSTEMS, 2020, 30 (07) : 1397 - 1411
  • [25] Reproduction of two species of freshwater turtle, Chelodina rugosa and Elseya dentata, from the wet-dry tropics of northern Australia
    Kennett, R
    JOURNAL OF ZOOLOGY, 1999, 247 : 457 - 473
  • [26] Productivity is negatively related to shoot growth across five mango cultivars in the seasonally wet-dry tropics of northern Australia
    Lu, Ping
    Chacko, Elias K.
    Bithell, Sean L.
    Schaper, Heinz
    Wiebel, Josef
    Cole, Steve
    Mueller, Warren J.
    FRUITS, 2013, 68 (04) : 279 - 289
  • [27] Can sampling for vegetation characterisation surrogate for species richness? Case studies from the wet-dry tropics of northern Australia
    Patykowski, John
    Cowie, Ian
    Cuff, Nick
    Chong, Caroline
    Nano, Catherine
    Jobson, Peter
    Lewis, Donna
    AUSTRALIAN JOURNAL OF BOTANY, 2021, 69 (07) : 375 - 385
  • [28] Diet of two freshwater turtles, Chelodina rugosa and Elseya dentata (Testudines: Chelidae) from the wet-dry tropics of northern Australia
    Kennett, R
    Tory, O
    COPEIA, 1996, (02) : 409 - 419
  • [29] Growth models for two species of freshwater turtle, Chelodina rugosa and Elseya dentata, from the wet-dry tropics of Northern Australia
    Kennett, R
    HERPETOLOGICA, 1996, 52 (03) : 383 - 395
  • [30] Monitoring plant physiological characteristics to evaluate mine site revegetation: A case study from the wet-dry tropics of northern Australia
    Susanne Schmidt
    George R. Stewart
    N. Ashwath
    Plant and Soil, 1999, 215 : 73 - 84