Improved SPH Approach to Branched Polymer Free Surface Flows Based on the XPP Model

被引:6
|
作者
Jiang, Tao [1 ]
Ouyang, Jie [1 ]
Zhang, Lin [1 ]
Li, Xuejuan [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial stress; Polymer; SPH; Surface; Viscoelastic; XPP model; SMOOTHED PARTICLE HYDRODYNAMICS; NUMERICAL-SIMULATION; VISCOELASTIC FLOWS; FLUID; DROP;
D O I
10.1080/03602559.2010.531433
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this work, an improved smoothed particle hydrodynamics (IMSPH) method is presented to simulate a polymer-free surface based on XPP model. The IMSPH is a coupled approach between smoothed particle hydrodynamics (SPH) method and the finite particle method (FPM), which possesses higher accuracy and better stability than SPH, especially on boundary. An artificial stress term is added to IMSPH for removing the unphysical phenomenon. The examples of impacting drop and jet buckling are investigated, and the influence of the physical parameters on moving free surface with high Weissenberg number is considered. All the numerical results agree well with the available data.
引用
收藏
页码:203 / 215
页数:13
相关论文
共 50 条
  • [31] An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows
    Xenakis, A. M.
    Lind, S. J.
    Stansby, P. K.
    Rogers, B. D.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2015, 218 : 1 - 15
  • [32] An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids
    Xu, Xiaoyang
    Deng, Xiao-Long
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 201 : 43 - 62
  • [33] A two-phase SPH model for massive sediment motion in free surface flows
    Shi, Huabin
    Si, Pengfei
    Dong, Ping
    Yu, Xiping
    ADVANCES IN WATER RESOURCES, 2019, 129 : 80 - 98
  • [34] JOSEPHINE: A parallel SPH code for free-surface flows
    Cherfils, J. M.
    Pinon, G.
    Rivoalen, E.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (07) : 1468 - 1480
  • [35] A new kernel function for SPH with applications to free surface flows
    Yang, X. F.
    Peng, S. L.
    Liu, M. S.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (15-16) : 3822 - 3833
  • [36] An improved SPH model for multiphase flows with large density ratios
    Zhu, G. X.
    Zou, L.
    Chen, Z.
    Wang, A. M.
    Liu, M. B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 86 (02) : 167 - 184
  • [37] SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows
    Canelas, Ricardo B.
    Crespo, Alejandro J. C.
    Dominguez, Jose M.
    Ferreira, Rui M. L.
    Gomez-Gesteira, Moncho
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 202 : 131 - 140
  • [38] A SPH Simulation Approach using the Carreau Model for the Free Surface Flow of Adhesives
    Roehler, M.
    Kumar, V.
    Richter, C.
    Reinhart, G.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM), 2018, : 128 - 132
  • [39] Three-dimensional transient complex free surface flows: Numerical simulation of XPP fluid
    Figueiredo, R. A.
    Oishi, C. M.
    Cuminato, J. A.
    Alves, M. A.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 195 : 88 - 98
  • [40] Robust Simulation of Sparsely Sampled Thin Features in SPH-Based Free Surface Flows
    He, Xiaowei
    Wang, Huamin
    Zhang, Fengjun
    Wang, Hongan
    Wang, Guoping
    Zhou, Kun
    ACM TRANSACTIONS ON GRAPHICS, 2014, 34 (01):