FakeFinder: Twitter Fake News Detection on Mobile

被引:4
|
作者
Tian, Lin [1 ]
Zhang, Xiuzhen [1 ]
Peng, Min [2 ]
机构
[1] RMIT Univ, Melbourne, Vic, Australia
[2] Wuhan Univ, Wuhan, Peoples R China
基金
澳大利亚研究理事会;
关键词
Fake news detection; ALBERT; Mobile;
D O I
10.1145/3366424.3382706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Misinformation, or fake news, spreads quickly on the social media platform Twitter. Mobile devices are widely used to read Twitter posts. A mobile app that can detect fake news from the live Twitter stream and alert users in real time is an effective way to contain the spread of misinformation on Twitter. Towards this objective, the prediction model needs to be small to achieve fast prediction. In this paper, we design and develop a fake news detection mobile app with a device-based prediction model based on the small language model ALBERT. Experiments show that it can achieve real-time, accurate detection of fake news.
引用
收藏
页码:79 / 80
页数:2
相关论文
共 50 条
  • [11] Twitter Fake Account Detection
    Ersahin, Buket
    Aktas, Ozlem
    Kilinc, Deniz
    Akyol, Ceyhun
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 388 - 392
  • [12] Deep learning for fake news detection on Twitter regarding the 2019 Hong Kong protests
    Alexandros Zervopoulos
    Aikaterini Georgia Alvanou
    Konstantinos Bezas
    Asterios Papamichail
    Manolis Maragoudakis
    Katia Kermanidis
    Neural Computing and Applications, 2022, 34 : 969 - 982
  • [13] Deep learning for fake news detection on Twitter regarding the 2019 Hong Kong protests
    Zervopoulos, Alexandros
    Alvanou, Aikaterini Georgia
    Bezas, Konstantinos
    Papamichail, Asterios
    Maragoudakis, Manolis
    Kermanidis, Katia
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 969 - 982
  • [14] AI and Fake News: A Conceptual Framework for Fake News Detection
    Ameli, Leila
    Chowdhury, Md Shah Alam
    Farid, Farnaz
    Bello, Abubakar
    Sabrina, Fariza
    Maurushat, Alana
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON CYBER SECURITY, CSW 2022, 2022, : 34 - 39
  • [15] A Hybrid Approach for Fake News Detection in Twitter Based on User Features and Graph Embedding
    Hamdi, Tarek
    Slimi, Hamda
    Bounhas, Ibrahim
    Slimani, Yahya
    DISTRIBUTED COMPUTING AND INTERNET TECHNOLOGY (ICDCIT 2020), 2020, 11969 : 266 - 280
  • [16] Read All About It: The Politicization of "Fake News" on Twitter
    Brummette, John
    DiStaso, Marcia
    Vafeiadis, Michail
    Messner, Marcus
    JOURNALISM & MASS COMMUNICATION QUARTERLY, 2018, 95 (02) : 497 - 517
  • [17] Propaganda, Fake News, and Fake Trends: The Weaponization of Twitter Bots in the Gulf Crisis
    Jones, Marc Owen
    INTERNATIONAL JOURNAL OF COMMUNICATION, 2019, 13 : 1389 - 1415
  • [18] An Ensemble Approach to Detect Fake News Spreaders on Twitter
    Sarwar, Muhammad Nabeel
    UlAmin, Riaz
    Jabeen, Sidra
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 294 - 302
  • [19] Fake News spreading on Twitter: Curro: The "condemned dog"
    Vila Marquez, Fatima
    Arce Garcia, Sergio
    HISTORIA Y COMUNICACION SOCIAL, 2019, 24 (02): : 485 - 503
  • [20] Automatically Identifying Fake News in Popular Twitter Threads
    Buntain, Cody
    Golbeck, Jennifer
    2017 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD), 2017, : 208 - 215