Global Solutions of the Evolutionary Faddeev Model with Small Initial Data

被引:10
|
作者
Lei, Zhen [1 ,2 ]
Lin, Fang Hua [3 ]
Zhou, Yi [1 ,2 ]
机构
[1] Fudan Univ, Sch Math Sci, LMNS, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[3] NYU, Courant Inst Math, New York, NY 10012 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Faddeev model; global existence; quasi-linear wave equations; semi-linear wave equations; EXISTENCE; ENERGY; EQUATIONS; SOLITONS;
D O I
10.1007/s10114-011-0465-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for evolutionary Faddeev model corresponding to maps from the Minkowski space R1+n to the unit sphere S-2, which obey a system of non-linear wave equations. The nonlinearity enjoys the null structure and contains semi-linear terms, quasi-linear terms and unknowns themselves. We prove that the Cauchy problem is globally well-posed for sufficiently small initial data in Sobolev space.
引用
收藏
页码:309 / 328
页数:20
相关论文
共 50 条