PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System

被引:2
|
作者
Li, Zeyi [1 ]
Wang, Yun [1 ]
Wang, Pan [1 ]
Su, Haorui [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Modern Posts, Nanjing, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Dept Informat & Comp Sci, Suzhou, Peoples R China
关键词
Anomaly detection; Intrusion Detection System; Generative Adversarial Network; Unsupervised learning; Traffic identification;
D O I
10.1109/TrustCom53373.2021.00107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid development of communication network, the types and quantities of network traffic data have increased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without manual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the existing unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
引用
收藏
页码:734 / 741
页数:8
相关论文
共 50 条
  • [21] Review on Anomaly based Network Intrusion Detection System
    Samrin, Rafath
    Vasumathi, D.
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 141 - 147
  • [22] Anomaly intrusion detection system based on neural network
    Li, Yuan-Bing
    Fang, Ding-Yi
    Wu, Xiao-Nan
    Chen, Xiao-Jiang
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2005, 27 (09): : 1648 - 1651
  • [23] Anomaly-Based Network Intrusion Detection System
    Villalba, L. J. G.
    Orozco, A. L. S.
    Vidal, J. M.
    IEEE LATIN AMERICA TRANSACTIONS, 2015, 13 (03) : 850 - 855
  • [24] Network Intrusion Detection Method Based on Conditional Generative Adversarial Network integrating Multi-scale CNN
    Geng, Zhiqiang
    Xi, Xiang
    Hu, Xuan
    Han, Yongming
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1522 - 1527
  • [25] LogGAN: A Sequence-Based Generative Adversarial Network for Anomaly Detection Based on System Logs
    Xia, Bin
    Yin, Junjie
    Xu, Jian
    Li, Yun
    SCIENCE OF CYBER SECURITY, SCISEC 2019, 2019, 11933 : 61 - 76
  • [26] An Enhanced AI-Based Network Intrusion Detection System Using Generative Adversarial Networks
    Park, Cheolhee
    Lee, Jonghoon
    Kim, Youngsoo
    Park, Jong-Geun
    Kim, Hyunjin
    Hong, Dowon
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (03) : 2330 - 2345
  • [27] An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
    Rao, Yamarthi Narasimha
    Babu, Kunda Suresh
    SENSORS, 2023, 23 (01)
  • [28] Research on intrusion detection for maritime meteorological sensor network based on balancing generative adversarial network
    Sun X.
    Zhang G.
    Xing H.
    Zenghui W.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (04): : 124 - 136
  • [29] Data-Balancing Algorithm Based on Generative Adversarial Network for Robust Network Intrusion Detection
    Liu, I-Hsien
    Hsieh, Cheng-En
    Lin, Wei -Min
    Li, Jung-Shian
    Li, Chu -Fen
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2022, 9 (03): : 303 - 308
  • [30] Intrusion Detection Method Based on Complementary Adversarial Generation Network
    Li, Lixiang
    Liu, Yuxuan
    Peng, Haipeng
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT II, 2023, 13969 : 260 - 271