LEARNING ENVIRONMENTAL SOUNDS WITH END-TO-END CONVOLUTIONAL NEURAL NETWORK

被引:0
|
作者
Tokozume, Yuji [1 ]
Harada, Tatsuya [1 ]
机构
[1] Univ Tokyo, Tokyo, Japan
关键词
Environmental sound classification; convolutional neural network; end-to-end system; feature learning;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Environmental sound classification (ESC) is usually conducted based on handcrafted features such as the log-mel feature. Meanwhile, end-to-end classification systems perform feature extraction jointly with classification and have achieved success particularly in image classification. In the same manner, if environmental sounds could be directly learned from the raw waveforms, we would be able to extract a new feature effective for classification that could not have been designed by humans, and thi s new feature could improve the classification performance. In this paper, we propose a novel end-to-end ESC system using a convolutional neural network (CNN). The classification accuracy of our system on ESC-50 is 5.1% higher than that achieved when using logmel-CNN with the static log-mel feature. Moreover, we achieve a 6.5% improvement in classification accuracy over the state-of-the-art logmel-CNN with the static and delta log-mel feature, simply by combining our system and logmel-CNN.
引用
收藏
页码:2721 / 2725
页数:5
相关论文
共 50 条
  • [21] An End-to-End Convolutional Neural Network for ECG-Based Biometric Authentication
    Pinto, Joao Ribeiro
    Cardoso, Jaime S.
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON BIOMETRICS THEORY, APPLICATIONS AND SYSTEMS (BTAS), 2019,
  • [22] WaveCRN: An Efficient Convolutional Recurrent Neural Network for End-to-End Speech Enhancement
    Hsieh, Tsun-An
    Wang, Hsin-Min
    Lu, Xugang
    Tsao, Yu
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 2149 - 2153
  • [23] Research on End-to-end Voiceprint Recognition Model Based on Convolutional Neural Network
    Hong Zhao
    Yue, Lupeng
    Wang, Weijie
    Zeng Xiangyan
    JOURNAL OF WEB ENGINEERING, 2021, 20 (05): : 1573 - 1585
  • [24] End-to-end dense stereo matching based on full convolutional neural network
    Kang J.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (05): : 785
  • [25] End-to-end convolutional neural network design for automatic detection of influenza virus
    Lee, Junghwan
    Eom, Heesang
    Hariyani, Yuli Sun
    Kim, Cheonjung
    Yoo, Yongkyoung
    Lee, Jeonghoon
    Park, Cheolsoo
    Lee, Jeonghoon (jhlee0804@gmail.com), 1600, Institute of Electronics Engineers of Korea (10): : 31 - 36
  • [26] An End-to-End System for Automatic Urinary Particle Recognition with Convolutional Neural Network
    Liang, Yixiong
    Kang, Rui
    Lian, Chunyan
    Mao, Yuan
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (09)
  • [27] GuidedNet: Single Image Dehazing Using an End-to-end Convolutional Neural Network
    Goncalves, Lucas T.
    Gaya, Joel O.
    Drews-, Paulo, Jr.
    Botelho, Silvia S. C.
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 79 - 86
  • [28] End-to-End Navigation with Branch Turning Support using Convolutional Neural Network
    Seiya, Shunya
    Carballo, Alexander
    Takeuchi, Eijiro
    Miyajima, Chiyomi
    Takeda, Kazuya
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2018, : 499 - 506
  • [29] Leukocyte Segmentation via End-to-End Learning of Deep Convolutional Neural Networks
    Lu, Yan
    Fan, Haoyi
    Li, Zuoyong
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 191 - 200
  • [30] CONVOLUTIONAL ANALYSIS OPERATOR LEARNING BY END-TO-END TRAINING OF ITERATIVE NEURAL NETWORKS
    Kofler, Andreas
    Wald, Christian
    Schaeffter, Tobias
    Haltmeier, Markus
    Kolbitsch, Christoph
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,