Effect of transverse magnetic field annealing on the magnetic properties and microstructure of FeSiBNbCuP nanocrystalline alloys

被引:9
|
作者
Ding, Qian [1 ,2 ,3 ]
Li, Jiawei [2 ,3 ,4 ]
Zhang, Ruiheng [2 ,3 ]
He, Aina [2 ,3 ]
Dong, Yaqiang [2 ,3 ]
Sun, Yu [2 ,3 ]
Zheng, Junwei [1 ,2 ,3 ]
Li, Xubin [2 ,3 ]
Liu, Xincai [1 ,2 ,3 ]
机构
[1] Ningbo Univ, Fac Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, CAS Key Lab Magnet Mat & Devices, Ningbo 315201, Peoples R China
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Zhejiang Prov Key Lab Magnet Mat & Applicat Techno, Ningbo 315201, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Nanocrystalline alloy; Transverse magnetic field annealing; Magnetic properties; Magnetic anisotropy; Magnetic domain structure; INDUCED ANISOTROPY; ATOM-PROBE; CRYSTALLIZATION; SI; CORES;
D O I
10.1016/j.jmmm.2022.169628
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Improving the high-frequency magnetic properties of Fe-based nanocrystalline alloys with high-saturation magnetic induction (Bs) has received extensive attention recently. The magnetic properties, microstructure, and magnetic domain structure of Fe76Si12B8Nb2.2Cu0.8P1 ribbons after normal isothermal annealing (NA) and transverse magnetic field annealing (TFA) were investigated. It was found that NA and in situ crystallization TFA (TFA1) have little effects on the Bs and coercivity (Hc) of the ribbons but they significantly affect the magnetic permeability (mu) and optimal annealing window. In contrast, TFA after nanocrystallization (TFA2) enables the ribbons to attain a higher mu in a wide frequency range and a wider annealing temperature range than NA and TFA1. The TFA2 ribbons exhibit a high Bs of 1.45 T, low Hc of 0.8 A/m, and high mu under 1 A/m of 24,000 and 16,600 at 1 and 100 kHz, respectively. The factors causing the improved soft magnetic properties were revealed in terms of magnetic anisotropy and magnetization processes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys
    Hou, Long
    Fan, Xingdu
    Wang, Qianqian
    Yang, Weiming
    Shen, Baolong
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) : 1655 - 1661
  • [32] Improved High Frequency Soft Magnetic Properties in FeSiBCuNb Nanocrystalline Alloys Induced by Additional Low Magnetic Field Annealing
    Luo, Ting
    Liu, Hailang
    Huang, Caimin
    Yue, Gao
    Peng, Zhiguo
    Xu, Jia
    Yang, Yuanzheng
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2024, 37 (8-10) : 1421 - 1428
  • [33] Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
    于万秋
    孙筵翔
    刘立华
    张平丽
    Chinese Physics B, 2025, 34 (01) : 411 - 416
  • [34] Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
    Yu, Wanqiu
    Sun, Yanxiang
    Liu, Lihua
    Zhang, Pingli
    CHINESE PHYSICS B, 2025, 34 (01)
  • [35] The influence of composition and field annealing on magnetic properties of FeCo-based amorphous and nanocrystalline alloys
    Johnson, F
    Um, CY
    McHenry, ME
    Garmestani, H
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 297 (02) : 93 - 98
  • [37] EFFECT OF ROTATIONAL MAGNETIC FIELD ANNEALING ON THE MAGNETIC ANISOTROPY OF AMORPHOUS ALLOYS
    官可洪
    孙廷烈
    赵文成
    A Monthly Journal of Science, 1984, (06) : 740 - 742
  • [38] The Effect of Inhibitors on the Structure and Magnetic Properties of Nanocrystalline Soft Magnetic Alloys
    Tsepelev, V. S.
    Starodubtsev, Yu. N.
    Belozerov, V. Ya.
    PHYSICS OF METALS AND METALLOGRAPHY, 2018, 119 (09): : 831 - 836
  • [39] The Effect of Inhibitors on the Structure and Magnetic Properties of Nanocrystalline Soft Magnetic Alloys
    V. S. Tsepelev
    Yu. N. Starodubtsev
    V. Ya. Belozerov
    Physics of Metals and Metallography, 2018, 119 : 831 - 836
  • [40] Annealing effect on microstructure and magnetic properties of nanocrystalline Zr6Fe23 compound
    Fersi, R.
    Dalia, A. P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 560