Existence Theorems for Generalized Distance on Complete Metric Spaces

被引:13
|
作者
Ume, Jeong Sheok [1 ]
机构
[1] Changwon Natl Univ, Dept Appl Math, Chang Won 641773, South Korea
关键词
FIXED-POINT THEOREMS; MAPPINGS;
D O I
10.1155/2010/397150
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first introduce the new concept of a distance called u-distance, which generalizes omega-distance, Tataru's distance, and tau-distance. Then we prove a new minimization theorem and a new fixed point theorem by using a u-distance on a complete metric space. Our results extend and unify many known results due to Caristi, Ciric, Ekeland, Kada-Suzuki-Takahashi, Kannan, Ume, and others.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] d-Young distance function and existence of fixed points in complete metric spaces
    Rakocevic, Vladimir
    Samet, Bessem
    AEQUATIONES MATHEMATICAE, 2025,
  • [42] New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces
    Chih-Sheng Chuang
    Lai-Jiu Lin
    Journal of Global Optimization, 2013, 57 : 533 - 547
  • [43] Ekeland's variational principle, minimax theorems and existence of nonconvex equilibria in complete metric spaces
    Lin, Lai-Jiu
    Du, Wei-Shih
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) : 360 - 370
  • [44] New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces
    Chuang, Chih-Sheng
    Lin, Lai-Jiu
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (02) : 533 - 547
  • [45] Fixed point theorems for metric tower mappings in complete metric spaces
    Godwin Amechi Okeke
    Daniel Francis
    The Journal of Analysis, 2024, 32 : 949 - 991
  • [46] Fixed point theorems for metric tower mappings in complete metric spaces
    Okeke, Godwin Amechi
    Francis, Daniel
    JOURNAL OF ANALYSIS, 2024, 32 (02): : 949 - 991
  • [47] APPROXIMATE FIXED POINT THEOREMS FOR PARTIAL GENERALIZED CONVEX CONTRACTION MAPPINGS IN α-COMPLETE METRIC SPACES
    Latif, Abdul
    Sintunavarat, Wutiphol
    Ninsri, Aphinat
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 315 - 333
  • [48] Coupled g-coincidence point theorems for a generalized compatible pair in complete metric spaces
    Nan, Narawadee Na
    Charoensawan, Phakdi
    FIXED POINT THEORY AND APPLICATIONS, 2014,
  • [49] FIXED-POINT THEOREMS IN COMPLETE METRIC SPACES
    DASS, BK
    KHAZANCHI, L
    COLLOQUIUM MATHEMATICUM, 1976, 34 (02) : 223 - 229
  • [50] Two fixed point theorems in complete metric spaces
    Huang, Huaping
    Samet, Bessem
    AIMS MATHEMATICS, 2024, 9 (11): : 30612 - 30637