A novel Monte Carlo approach to hybrid local volatility models

被引:6
|
作者
van der Stoep, Anthonie W. [1 ,2 ,3 ]
Grzelak, Lech A. [3 ,4 ]
Oosterlee, Cornelis W. [2 ,3 ]
机构
[1] Rabobank, PMV, Utrecht, Netherlands
[2] Natl Res Inst Math & Comp Sci, CWI, Amsterdam, Netherlands
[3] Delft Univ Technol, DIAM, Delft, Netherlands
[4] ING, Quantitat Analyt, Amsterdam, Netherlands
关键词
Local volatility; Monte Carlo; Hybrid; Stochastic volatility; Stochastic local volatility; Stochastic interest rates; Stochastic collocation; Regression; SABR; Heston; Hull-White; C15; C63; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; OPTIONS;
D O I
10.1080/14697688.2017.1280613
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18-20], [Int. J. Theor. Appl. Finance, 1998, 1, 61-110] models. In particular, we consider the stochastic local volatility modelsee e.g. Lipton et al. [Quant. Finance, 2014, 14, 1899-1922], Piterbarg [Risk, 2007, April, 84-89], Tataru and Fisher [Quantitative Development Group, Bloomberg Version 1, 2010], Lipton [Risk, 2002, 15, 61-66]and the local volatility model incorporating stochastic interest ratessee e.g. Atlan [ArXiV preprint math/0604316, 2006], Piterbarg [Risk, 2006, 19, 66-71], Deelstra and Rayee [Appl. Math. Finance, 2012, 1-23], Ren et al. [Risk, 2007, 20, 138-143]. For both model classes a particular (conditional) expectation needs to be evaluated which cannot be extracted from the market and is expensive to compute. We establish accurate and cheap to evaluate' approximations for the expectations by means of the stochastic collocation method [SIAM J. Numer. Anal., 2007, 45, 1005-1034], [SIAM J. Sci. Comput., 2005, 27, 1118-1139], [Math. Models Methods Appl. Sci., 2012, 22, 1-33], [SIAM J. Numer. Anal., 2008, 46, 2309-2345], [J. Biomech. Eng., 2011, 133, 031001], which was recently applied in the financial context [Available at SSRN 2529691, 2014], [J. Comput. Finance, 2016, 20, 1-19], combined with standard regression techniques. Monte Carlo pricing experiments confirm that our method is highly accurate and fast.
引用
收藏
页码:1347 / 1366
页数:20
相关论文
共 50 条
  • [21] Local volatility function models under a benchmark approach
    Heath, David
    Platen, Eckhard
    QUANTITATIVE FINANCE, 2006, 6 (03) : 197 - 206
  • [22] A chaos expansion approach under hybrid volatility models
    Funahashi, Hideharu
    QUANTITATIVE FINANCE, 2014, 14 (11) : 1923 - 1936
  • [23] A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space
    Pinski, Francis J.
    ENTROPY, 2021, 23 (05)
  • [24] A hybrid Monte Carlo approach to molecular aggregation in a porous medium
    G.M. Foo
    R.B. Pandey
    The European Physical Journal E, 2000, 3 : 221 - 225
  • [25] Hybrid Monte Carlo approach to the entanglement entropy of interacting fermions
    Drut, Joaquin E.
    Porter, William J.
    PHYSICAL REVIEW B, 2015, 92 (12):
  • [26] A hybrid Monte Carlo approach to molecular aggregation in a porous medium
    Foo, GM
    Pandey, RB
    EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (03): : 221 - 225
  • [27] Hybrid integral equation/Monte Carlo approach to complexation thermodynamics
    Schmidt, KF
    Kast, SM
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (24): : 6289 - 6297
  • [28] A direct approach to conformational dynamics based on hybrid Monte Carlo
    Schütte, C
    Fischer, A
    Huisinga, W
    Deuflhard, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) : 146 - 168
  • [29] Markov chain Monte Carlo techniques in iterative detectors: A novel approach based on Monte Carlo integration
    Shi, ZN
    Zhu, HD
    Farhang-Boroujeny, B
    GLOBECOM '04: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-6, 2004, : 325 - 329
  • [30] A sequential Monte Carlo approach for the pricing of barrier option under a stochastic volatility model
    Cuomo, S.
    Di Lorenzo, E.
    Di Somma, V
    Toraldo, G.
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2020, 13 (01) : 128 - 145