Improving Geodesic Invariant Descriptors through Color Information

被引:0
|
作者
Migliore, Davide [1 ]
Matteucci, Matteo [1 ]
Campari, Pier Paolo [1 ]
机构
[1] Politecn Milan, Dept Elect & Informat, I-20133 Milan, Italy
关键词
D O I
10.1007/978-3-642-10226-4_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Geodesic invariant feature (GIH) have been originally proposed to build a new local feature descriptor invariant not only to affine transformations, but also to general deformations. The aim of this paper is to investigate the possible improvements given by the use of color information in this kind of descriptors. We introduced color information both in geodesic feature construction and description. At feature construction level, we extended the fast marching algorithm to use color information; at description level, we tested several color spaces on real data and we devised the opponent color space as an useful integration to intensity information. The experiments used to validate our theory are based on publicly available data and show the improvement, both in precision and recall, with respect to the original intensity based geodesic features. We also compared this kind of features, on affine and non affine transformation, with SIFT, steerable filters, moments invariants, spin images and GIH.
引用
收藏
页码:148 / 161
页数:14
相关论文
共 50 条
  • [1] Adding color to geodesic invariant features
    Campari, Pier Paolo
    Matteucci, Matteo
    Migliore, Davide
    VISAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2008, : 227 - 234
  • [2] Illuminant Invariant Descriptors for Color Texture Classification
    Cusano, Claudio
    Napoletano, Paolo
    Schettini, Raimondo
    COMPUTATIONAL COLOR IMAGING, CCIW 2013, 2013, 7786 : 239 - 249
  • [3] Geodesic Distance Descriptors
    Shamai, Gil
    Kimmel, Ron
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3624 - 3632
  • [4] Improving scale invariant feature transform-based descriptors with shape-color alliance robust feature
    Wang, Rui
    Zhu, Zhengdan
    Zhang, Liang
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (03)
  • [5] Affine invariant descriptors for color images using Fourier series
    El Oirrak, A
    Daoudi, M
    Aboutajdine, D
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1339 - 1348
  • [6] Affine invariant descriptors for color images based on independent component analysis
    Liu, CM
    Huang, XM
    Zhang, LM
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 985 - 990
  • [7] Use of Color Information for Keypoints Detection and Descriptors Construction
    Krylov, Andrey S.
    Sorokin, Dmitry V.
    Yurin, Dmitry V.
    Semeikina, Ekaterina V.
    INTELLIGENT SCIENCE AND INTELLIGENT DATA ENGINEERING, ISCIDE 2011, 2012, 7202 : 389 - 396
  • [8] Color Objects Recognition System based on Artificial Neural Network with Zernike, Hu & Geodesic Descriptors
    Bencharef, O.
    Fakir, M.
    Minaoui, B.
    Hajraoui, A.
    Oujaoura, M.
    2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT), 2012, : 338 - 343
  • [9] Water detection through spatio-temporal invariant descriptors
    Mettes, Pascal
    Tan, Robby T.
    Veltkamp, Remco C.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 154 : 182 - 191
  • [10] Affine transforms between image space and color space for invariant local descriptors
    Song, Xiaohu
    Muselet, Damien
    Tremeau, Alain
    PATTERN RECOGNITION, 2013, 46 (08) : 2376 - 2389