Applying a Machine Learning Approach to Predict Acute Toxicities During Radiation for Breast Cancer Patients

被引:11
|
作者
Reddy, J. [1 ]
Lindsay, W. D. [2 ]
Berlind, C. G. [3 ]
Ahern, C. A. [4 ]
Smith, B. D. [5 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Oncora Med Inc, Philadelphia, PA USA
[4] Oncora Med, Philadelphia, PA USA
[5] MD Anderson Canc Ctr, Houston, TX USA
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2018年 / 102卷 / 03期
关键词
D O I
10.1016/j.ijrobp.2018.06.167
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
116
引用
收藏
页码:S59 / S59
页数:1
相关论文
共 50 条
  • [41] Applying machine learning to predict reproductive condition in fish
    Flores, Andres
    Wiff, Rodrigo
    Donovan, Carl R.
    Galvez, Patricio
    ECOLOGICAL INFORMATICS, 2024, 80
  • [42] Accuracy Assessment of Machine Learning Algorithms Used to Predict Breast Cancer
    Ebrahim, Mohamed
    Sedky, Ahmed Ahmed Hesham
    Mesbah, Saleh
    DATA, 2023, 8 (02)
  • [43] Using Machine Learning Techniques to Predict Recurrent Breast Cancer in Taiwan
    Chen, Ying-Chen
    Chang, Chi-Chang
    2021 30TH WIRELESS AND OPTICAL COMMUNICATIONS CONFERENCE (WOCC 2021), 2021, : 145 - 145
  • [44] Machine learning approach to predict medication overuse in migraine patients
    Ferroni, Patrizia
    Zanzotto, Fabio M.
    Scarpato, Noemi
    Spila, Antonella
    Fofi, Luisa
    Egeo, Gabriella
    Rullo, Alessandro
    Palmirotta, Raffaele
    Barbanti, Piero
    Guadagni, Fiorella
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 1487 - 1496
  • [45] Quantification of Acute Skin Toxicities In Breast Cancer Patients Undergoing Adjuvant Proton Versus Photon Radiation Therapy
    Tommasino, Francesco
    Cella, Laura
    Farace, Paolo
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (03): : 676 - 677
  • [46] Applying a Machine Learning Model Using a Locally Preserving Projection based Feature Regeneration Algorithm to Predict Breast Cancer Risk
    Heidari, Morteza
    Khuzani, Abolfazl Zargari
    Danala, Gopichandh
    Mirniaharikandehei, Seyedehnafiseh
    Qian, Wei
    Zheng, Bin
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [47] Pain in patients with breast cancer during radiation
    Bormeth, SB
    Zander-Heinz, AC
    Budischewski, K
    Domin, C
    de la Fuente, F
    Nierhoff, CE
    Schiemann, MS
    Mose, S
    Rahn, AN
    Böttcher, HD
    EUROPEAN JOURNAL OF CANCER, 1999, 35 : S207 - S207
  • [48] Tumor Heterogeneity and Genomics to Predict Radiation Therapy Outcome for Head-and-Neck Cancer: A Machine Learning Approach
    Singh, A.
    Goyal, S.
    Rao, Y. J.
    Loew, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : S232 - S233
  • [49] Machine learning to predict tamoxifen adherence among US commercially insured breast cancer patients.
    O'Neill, Tyler J.
    Sharma, Vishakha
    Siadimas, Athanasios
    Babaeian, Amir
    Yerrapragada, Gayathri
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (29)
  • [50] Machine learning models based on immunological genes to predict the response to neoadjuvant therapy in breast cancer patients
    Chen, Jian
    Hao, Li
    Qian, Xiaojun
    Lin, Lin
    Pan, Yueyin
    Han, Xinghua
    FRONTIERS IN IMMUNOLOGY, 2022, 13