EXTENSION OF SHIFT-INVARIANT SYSTEMS IN L2(R) TO FRAMES

被引:5
|
作者
Bownik, Marcin [2 ]
Christensen, Ole [1 ]
Huang, Xinli [3 ]
Yu, Baiyun [4 ]
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Haixia Vocat & Tech Coll, Fuzhou, Fujian Province, Peoples R China
[4] Fuzhou Univ, Dept Math & Comp Sci, Fuzhou 350002, Peoples R China
关键词
Frames; Shift-invariant systems; FACTORIZATION; SUBSPACES; BASES;
D O I
10.1080/01630563.2012.682131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we show that any shift-invariant Bessel sequence with an at most countable number of generators can be extended to a tight frame for its closed linear span by adding another shift-invariant system with at most the same number of generators. We show that in general this result is optimal, by providing examples where it is impossible to obtain a tight frame by adding a smaller number of generators. An alternative construction (which avoids the technical complication of extracting the square root of a positive operator) yields an extension of the given Bessel sequence to a pair of dual frame sequences.
引用
收藏
页码:833 / 846
页数:14
相关论文
共 50 条
  • [41] Kernels of Gramian operators for frames in shift-invariant subspaces
    Hemmat, A. Askari
    Gabardo, J. -P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 911 - 922
  • [42] Wavelet frames and shift-invariant subspaces of periodic functions
    Goh, Say Song
    Teo, K. M.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) : 326 - 344
  • [43] System bandwidth and the existence of generalized shift-invariant frames
    Fuehr, Hartmut
    Lemvig, Jakob
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (02) : 563 - 601
  • [44] Riesz bases in L2(0,1) related to sampling in shift-invariant spaces
    García, AG
    Pérez-Villalón, G
    Portal, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) : 703 - 713
  • [45] Frames Associated with Shift-invariant Spaces on Local Fields
    Shah, Firdous A.
    Ahmad, Owais
    Rahimi, Asghar
    FILOMAT, 2018, 32 (09) : 3097 - 3110
  • [46] Perturbation of regular sampling in shift-invariant spaces for frames
    Zhao, Ping
    Zhao, Chun
    Casazza, Peter G.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4643 - 4648
  • [47] The uniqueness of shift-generated duals for frames in shift-invariant subspaees
    Hemmat, A. Askari
    Gabardo, Jean-Pierre
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2007, 13 (05) : 589 - 606
  • [48] The Uniqueness of Shift-Generated Duals for Frames in Shift-Invariant Subspaces
    A. Askari Hemmat
    Jean-Pierre Gabardo
    Journal of Fourier Analysis and Applications, 2007, 13 : 589 - 606
  • [49] Shift invariant spaces in L2(R,Cm) with m generators
    John, Anila
    Kulkarni, S. H.
    Radha, R.
    JOURNAL OF ANALYSIS, 2021, 29 (02): : 383 - 405
  • [50] GABOR FRAMES IN l2(Z) FROM GABOR FRAMES IN L2(R)
    Thomas, Jineesh
    Namboothiri, Madhavan N. M.
    Varghese, Eldo
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 877 - 888