EXTENSION OF SHIFT-INVARIANT SYSTEMS IN L2(R) TO FRAMES

被引:5
|
作者
Bownik, Marcin [2 ]
Christensen, Ole [1 ]
Huang, Xinli [3 ]
Yu, Baiyun [4 ]
机构
[1] Tech Univ Denmark, Dept Math, DK-2800 Lyngby, Denmark
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Haixia Vocat & Tech Coll, Fuzhou, Fujian Province, Peoples R China
[4] Fuzhou Univ, Dept Math & Comp Sci, Fuzhou 350002, Peoples R China
关键词
Frames; Shift-invariant systems; FACTORIZATION; SUBSPACES; BASES;
D O I
10.1080/01630563.2012.682131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we show that any shift-invariant Bessel sequence with an at most countable number of generators can be extended to a tight frame for its closed linear span by adding another shift-invariant system with at most the same number of generators. We show that in general this result is optimal, by providing examples where it is impossible to obtain a tight frame by adding a smaller number of generators. An alternative construction (which avoids the technical complication of extracting the square root of a positive operator) yields an extension of the given Bessel sequence to a pair of dual frame sequences.
引用
收藏
页码:833 / 846
页数:14
相关论文
共 50 条
  • [1] Sufficient conditions for shift-invariant systems to be frames in L2(ℝn)
    Deng Feng Li
    Tao Qian
    Acta Mathematica Sinica, English Series, 2013, 29 : 1629 - 1636
  • [2] Sufficient Conditions for Shift-Invariant Systems to be Frames in L2(Rn)
    Deng Feng LI
    Tao QIAN
    Acta Mathematica Sinica,English Series, 2013, (08) : 1629 - 1636
  • [3] Sufficient conditions for shift-invariant systems to be frames in L 2(R n )
    Li, Deng Feng
    Qian, Tao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (08) : 1629 - 1636
  • [4] Explicit constructions and properties of generalized shift-invariant systems in L2(R)
    Christensen, Ole
    Hasannasab, Marzieh
    Lemvig, Jakob
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2017, 43 (02) : 443 - 472
  • [5] Frames and Riesz bases of twisted shift-invariant spaces in L2(R2n)
    Radha, R.
    Adhikari, Saswata
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1442 - 1461
  • [6] FRAMES AND STABLE BASES FOR SHIFT-INVARIANT SUBSPACES OF L(2)(R(D))
    RON, A
    SHEN, ZW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (05): : 1051 - 1094
  • [7] TWISTED SHIFT-INVARIANT SYSTEM IN L2(R2N)
    Das, Santi Ranjan
    Velsamy, Rabeetha
    Ramakrishnan, Radha
    NAGOYA MATHEMATICAL JOURNAL, 2023, : 734 - 767
  • [8] Frames and generalized shift-invariant systems
    Christensen, Ole
    Pseudo-Differential Operators and Related Topics, 2006, 164 : 193 - 209
  • [9] The structure of shift-invariant subspaces of L2(Rn)
    Bownik, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 177 (02) : 282 - 309
  • [10] Walsh Shift-Invariant Sequences and p-adic Nonhomogeneous Dual Wavelet Frames in L2 (R+)
    Zhang, Yan
    RESULTS IN MATHEMATICS, 2019, 74 (03)