The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrodinger equation

被引:110
|
作者
Dehghan, Mehdi [1 ]
Mirzaei, Davoud [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
non-linear Schrodinger equation; meshless local Petrov-Galerkin (MLPG) method; unit heaviside test function; moving least square (MLS) approximation;
D O I
10.1016/j.enganabound.2007.11.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper the meshless local Petrov-Galerkin (MLPG) method is presented for the numerical solution of the two-dimensional nonlinear Schrodinger equation. The method is based on the local weak form and the moving least squares (MLS) approximation. For the MLS, nodal points spread over the analyzed domain are utilized to approximate the interior and boundary variables. A time stepping method is employed for the time derivative. To deal with the non-linearity, we use a predictor-corrector method. A very simple and efficient method is presented for evaluation the local domain integrals. Finally numerical results are presented for some examples to demonstrate the accuracy, efficiency and high rate of convergence of this method. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:747 / 756
页数:10
相关论文
共 50 条
  • [11] Determination of crack tip fields in linear elastostatics by the meshless local Petrov-Galerkin (MLPG) method
    Ching, HK
    Batra, RC
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2001, 2 (02): : 273 - 289
  • [12] Meshless local Petrov-Galerkin (MLPG) methods in quantum mechanics
    Nicomedes, Williams L.
    Mesquita, Renato C.
    Moreira, Fernando J. S.
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2011, 30 (06) : 1763 - 1776
  • [13] MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD FOR INCOMPRESSIBLE VISCOUS FLUID FLOWS
    Mohammadi, Mohammad Haji
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 2, 2006, : 369 - 379
  • [14] Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems
    Atluri, S. N.
    Liu, H. T.
    Han, Z. D.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 14 (03): : 141 - 152
  • [15] Meshless local Petrov-Galerkin (MLPG) method for shear deformable shells analysis
    Sladek, J
    Sladek, V
    Wen, PH
    Aliabadi, MH
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 13 (02): : 103 - 117
  • [16] Meshless local Petrov-Galerkin method for two-dimensional nonlinear water wave problems
    Ma, Q
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 205 (02) : 611 - 625
  • [17] Analysis of electrostatic MEMS using meshless local Petrov-Galerkin (MLPG) method
    Batra, Romesh C.
    Porfiri, Maurizio
    Spinello, Davide
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (11) : 949 - 962
  • [18] Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems
    Wu XueHong
    Shen ShengPing
    Tao WenQuan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 22 (01): : 65 - 76
  • [19] Meshless local Petrov-Galerkin collocation method for two-dimensional heat conduction problems
    Wu, XueHong
    Shen, ShengPing
    Tao, WenQuan
    CMES - Computer Modeling in Engineering and Sciences, 2007, 22 (01): : 65 - 76
  • [20] Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion problems
    Lin, H
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2000, 1 (02): : 45 - 60