Enhancement of Thermal Transfer From β-Ga2O3 Nano-Membrane Field-Effect Transistors to High Thermal Conductivity Substrate by Inserting an Interlayer

被引:13
|
作者
Noh, Jinhyun [1 ]
Chowdhury, Prabudhya Roy [2 ]
Segovia, Mauricio [2 ]
Alajlouni, Sami [1 ]
Si, Mengwei [1 ]
Charnas, Adam R. [1 ]
Huang, Shouyuan [2 ]
Maize, Kerry [1 ]
Shakouri, Ali [1 ]
Xu, Xianfan [2 ]
Ruan, Xiulin [2 ]
Ye, Peide D. [1 ]
机构
[1] Purdue Univ, Birck Nanotechnol Ctr, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
关键词
Nano-membrane; phonon density of state; self-heating effect; thermal boundary conductance (TBC); thermal bridge; thermal conductivity; beta-Ga2O3; FET; SINGLE-CRYSTALS; ZRO2;
D O I
10.1109/TED.2022.3142651
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The role of a HfO2 or ZrO2 interlayer as a thermal bridge between a beta-Ga2O3 channel and a sapphire substrate was investigated using a beta-Ga2O3 nano-membrane FET as a test vehicle. A 35% less channel temperature increase was observed when a thin HfO2 or ZrO2 interlayer was inserted between the beta-Ga2O3 channel and the sapphire substrate compared to devices without interlayers. Phonon density of states (PDOS) mismatch can explain the improvement of the thermal boundary conductance (TBC). In the acoustic region, the PDOS of HfO2 or ZrO2 has about a 700% larger overlap area with the PDOS of beta-Ga2O3 compared to the PDOS of sapphire. This suggests that the insertion of a thermal bridge interlayer can provide a potential solution to the low thermal conductivity of beta-Ga2O3 and the self-heating effect of beta-Ga2O3-based FETs.
引用
收藏
页码:1186 / 1190
页数:5
相关论文
共 50 条
  • [41] Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors
    Ren, F
    Hong, M
    Chu, SNG
    Marcus, MA
    Schurman, MJ
    Baca, A
    Pearton, SJ
    Abernathy, CR
    APPLIED PHYSICS LETTERS, 1998, 73 (26) : 3893 - 3895
  • [42] High Thermal Stability of κ-Ga2O3 Grown by MOCVD
    Lee, Junhee
    Kim, Honghyuk
    Gautam, Lakshay
    Razeghi, Manijeh
    CRYSTALS, 2021, 11 (04):
  • [43] Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants
    Slomski, M.
    Blumenschein, N.
    Paskov, P. P.
    Muth, J. F.
    Paskova, T.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (23)
  • [44] Effect of vacancy defects on the thermal transport of β-Ga2O3
    Munshi, Joydeep
    Roy, Ankit
    Hansen, Shane
    Ekuma, Chinedu E.
    Balasubramanian, Ganesh
    MOLECULAR SIMULATION, 2021, 47 (12) : 1017 - 1021
  • [45] Demonstration of β-Ga2O3 Heterojunction Gate Field-Effect Rectifier
    Liu, Qi
    Zhou, Xuanze
    He, Qiming
    Hao, Weibing
    Zhao, Xiaolong
    Hua, Mengyuan
    Xu, Guangwei
    Long, Shibing
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (07) : 3762 - 3767
  • [46] Assessment of channel temperature in β-(AlxGa1-x)2O3/Ga2O3 heterostructure field-effect transistors using visible wavelength thermoreflectance thermal imaging
    Lundh, James Spencer
    Pavlidis, Georges
    Sasaki, Kohei
    Centrone, Andrea
    Spencer, Joseph A.
    Masten, Hannah N.
    Currie, Marc
    Jacobs, Alan G.
    Konishi, Keita
    Kuramata, Akito
    Hobart, Karl D.
    Anderson, Travis J.
    Tadjer, Marko J.
    APPLIED PHYSICS LETTERS, 2024, 124 (05)
  • [47] Electrical contacts in monolayer Ga2O3 field-effect tansistors
    Dong, Linpeng
    Zhou, Shun
    Pu, Kaiwen
    Yang, Chen
    Xin, Bin
    Peng, Bo
    Liu, Weiguo
    APPLIED SURFACE SCIENCE, 2021, 564
  • [48] Oxygen sensitivity of Ga2O3 nanosheet field-effect transistor
    Zhang, Ying-Wu
    Gao, Kuang-Hong
    Li, Zhi-Qing
    APPLIED SURFACE SCIENCE, 2025, 688
  • [49] Phonon mode contributions to thermal conductivity of pristine and defective β-Ga2O3
    Yan, Zhequan
    Kumar, Satish
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (46) : 29236 - 29242
  • [50] Thermal conductivity of bulk and thin film β-Ga2O3 measured by the 3ω technique
    Blumenschein, N.
    Slomski, M.
    Paskov, P. P.
    Kaess, F.
    Breckenridge, M. H.
    Muth, J. F.
    Paskova, T.
    OXIDE-BASED MATERIALS AND DEVICES IX, 2018, 10533