Identities for the Widder transform and transforms with Bessel function kernels

被引:0
|
作者
Ucar, Faruk [1 ]
Yuerekli, Osman [2 ]
机构
[1] Univ Marmara, Dept Math, TR-34722 Istanbul, Turkey
[2] Ithaca Coll, Dept Math, Ithaca, NY 14850 USA
关键词
Laplace transforms; Widder potential transforms; H(v)-transforms; K(v)-transforms; Y(v)-transforms; Parseval-Goldstein type theorems;
D O I
10.1016/j.amc.2011.03.133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we consider the classical Widder transform, the H(v)-transform, the K(v)-transform, and the Y(v)-transform. Some identities involving these transforms and many others are given. By making use of these identities, a number of new Parseval-Goldstein type identities are obtained for these and other well-known integral transforms. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1096 / 1101
页数:6
相关论文
共 50 条
  • [21] A generalization of the Widder potential transform and applications
    Dernek, Nese
    Kurt, Veli
    Simsek, Yilmaz
    Yurekli, Osman
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (06) : 391 - 401
  • [22] WIDDER INVERSION FORMULA FOR THE LAMBERT TRANSFORM
    PENNINGTON, WB
    DUKE MATHEMATICAL JOURNAL, 1960, 27 (04) : 561 - 568
  • [23] Integral transforms involving a generalized k-Bessel function
    Khammash, Ghazi S.
    Salim, Tariq O.
    Aydi, Hassen
    Khattab, Noor N.
    Park, Choonkil
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [24] Certain Integral Transforms of Generalized k-Bessel Function
    Kottakkaran Sooppy Nisar
    Waseem Ahmad Khan
    Mohd Ghayasuddin
    Analysis in Theory and Applications, 2018, 34 (02) : 165 - 174
  • [25] SERIES SOLUTION OF DUAL INTEGRAL EQUATIONS WITH BESSEL FUNCTION KERNELS
    RATHIE, PN
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1969, 39 : 39 - &
  • [26] SPHERICAL BESSEL TRANSFORMS
    PETTITT, BA
    DANCHURA, W
    LABUN, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 105 (01) : 178 - 181
  • [27] Spherical Bessel transform via exponential sum approximation of spherical Bessel function
    Ikeno, Hidekazu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 355 : 426 - 435
  • [28] On index transforms with Meijer's G-function kernels
    Yarotskaya, LD
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 10 (3-4) : 309 - 320
  • [29] UNIFIED THEOREMS INVOLVING H-FUNCTION TRANSFORM AND MEIJER BESSEL-FUNCTION TRANSFORM
    GUPTA, KC
    AGRAWAL, SM
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1987, 96 (02): : 125 - 130
  • [30] ON THE CONCENTRATION OF A FUNCTION AND ITS LAGUERRE-BESSEL TRANSFORM
    Negzaoui, Selma
    Rebhi, Sami
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (03): : 825 - 836