Topological Hochschild homology and cohomology of A∞ ring spectra

被引:40
|
作者
Angeltveit, Vigleik [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
D O I
10.2140/gt.2008.12.987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an A(infinity) ring spectrum. We use the description from our preprint [1] of the cyclic bar and cobar construction to give a direct definition of topological Hochschild homology and cohomology of A using the Stasheff associahedra and another family of polyhedra called cyclohedra. This construction builds the maps making up the A(infinity) structure into THH(A), and allows us to study how THH(A) varies over the moduli space of A(infinity) structures on A. As an example, we study how topological Hochschild cohomology of Morava K-theory varies over the moduli space of A(infinity) structures and show that in the generic case, when a certain matrix describing the noncommutativity of the multiplication is invertible, topological Hochschild cohomology of 2-periodic Morava K-theory is the corresponding Morava E-theory. If the A(infinity) structure is "more commutative", topological Hochschild cohomology of Morava K-theory is some extension of Morava E-theory.
引用
收藏
页码:987 / 1032
页数:46
相关论文
共 50 条
  • [11] Hochschild cohomology is topological
    Dupont, N
    Hess, K
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 165 (01) : 1 - 6
  • [12] The Hochschild homology and cohomology of A(1)
    Salch, A.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1309 - 1328
  • [13] Logarithmic topological Hochschild homology of topological K-theory spectra
    Rognes, John
    Sagave, Steffen
    Schlichtkrull, Christian
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (02) : 489 - 527
  • [14] Tensor Hochschild homology and cohomology
    Cibils, C
    INTERACTIONS BETWEEN RING THEORY AND REPRESENTATIONS OF ALGEBRAS, 2000, 210 : 35 - 51
  • [15] Topological Hochschild homology
    Schwanzl, R
    Vogt, RM
    Waldhausen, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 345 - 356
  • [16] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    PIRASHVILI, T
    WALDHAUSEN, F
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (01) : 81 - 98
  • [17] Towards topological Hochschild homology of Johnson-Wilson spectra
    Ausoni, Christian
    Richter, Birgit
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (01): : 375 - 393
  • [18] Topological Hochschild homology of Thom spectra and the free loop space
    Blumberg, Andrew J.
    Cohen, Ralph L.
    Schlichtkrull, Christian
    GEOMETRY & TOPOLOGY, 2010, 14 (02) : 1165 - 1242
  • [19] TOPOLOGICAL HOCHSCHILD HOMOLOGY AND THE CYCLIC BAR CONSTRUCTION IN SYMMETRIC SPECTRA
    Patchkoria, Irakli
    Sagave, Steffen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 4099 - 4106
  • [20] Computational tools for twisted topological Hochschild homology of equivariant spectra
    Adamyk, Katharine
    Gerhardt, Teena
    Hess, Kathryn
    Klang, Inbar
    Kong, Hana Jia
    TOPOLOGY AND ITS APPLICATIONS, 2022, 316