Agent Identification Using a Sparse Bayesian Model

被引:2
|
作者
Duan, Huiping [1 ]
Li, Hongbin [2 ]
Xie, Jing [1 ]
Panikov, Nicolai S. [3 ]
Cui, Hong-Liang [4 ]
机构
[1] LC Pegasus Corp, Hillside, NJ 07205 USA
[2] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[3] Northeastern Univ, Dept Biol, Boston, MA 02115 USA
[4] NYU, Polytech Inst, Dept Phys, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
Agent identification; false alarm; linear mixture; mismatch; signature; sparse Bayesian model; spectral sensing;
D O I
10.1109/JSEN.2011.2130521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Identifying agents in a linear mixture is a fundamental problem in spectral sensing applications including chemical and biological agent identification. In general, the size of the spectral signature library is usually much larger than the number of agents really present. Based on this fact, the sparsity of the mixing coefficient vector can be utilized to help improve the identification performance. In this paper, we propose a new agent identification method by using a sparse Bayesian model. The proposed iterative algorithm takes into account the nonnegativity of the abundance fractions and is proved to be convergent. Numerical studies with a set of ultraviolet (UV) to infrared (IR) spectra are carried out for demonstration. The effect of the signature mismatch is also studied using a group of terahertz (THz) spectra.
引用
收藏
页码:2556 / 2564
页数:9
相关论文
共 50 条
  • [21] Enhancing Nonlinear Subspace Identification Using Sparse Bayesian Learning with Spike and Slab Priors
    Rui Zhu
    Sufang Chen
    Dong Jiang
    Shitao Xie
    Lei Ma
    Stefano Marchesiello
    Dario Anastasio
    Journal of Vibration Engineering & Technologies, 2024, 12 : 3021 - 3031
  • [22] Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models
    Steinke, Florian
    Seeger, Matthias
    Tsuda, Koji
    BMC SYSTEMS BIOLOGY, 2007, 1
  • [23] Sparse Bayesian deep learning for dynamic system identification
    Zhou, Hongpeng
    Ibrahim, Chahine
    Zheng, Wei Xing
    Pan, Wei
    AUTOMATICA, 2022, 144
  • [24] Sparse Bayesian learning for beamforming using sparse linear arrays
    Nannuru, Santosh
    Koochakzadeh, Ali
    Gemba, Kay L.
    Pal, Piya
    Gerstoft, Peter
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (05): : 2719 - 2729
  • [25] Reliable Camera Model Identification Using Sparse Gaussian Processes
    Lorch, Benedikt
    Schirrmacher, Franziska
    Maier, Anatol
    Riess, Christian
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 912 - 916
  • [26] A Joint Robust Sparse Bayesian Learning Model with the Mixture o Gaussians for the Structural Damage Identification
    Li R.-P.
    Song X.-L.
    Yi W.
    Xiao Y.-Z.
    Deng Q.-T.
    Li X.-B.
    Zhongguo Gonglu Xuebao/China Journal of Highway and Transport, 2024, 37 (05): : 300 - 313
  • [27] A Bayesian Lasso based sparse learning model
    Helgoy, Ingvild M.
    Li, Yushu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023,
  • [28] BAYESIAN FEATURE SELECTION FOR SPARSE TOPIC MODEL
    Chang, Ying-Lan
    Lee, Kuen-Feng
    Chien, Jen-Tzung
    2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [29] Bayesian sparse hierarchical model for image denoising
    Xiao, Jun
    Zhao, Rui
    Lam, Kin-Man
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 96
  • [30] Identification of dynamic mass-action biochemical reaction networks using sparse Bayesian methods
    Jiang, Richard
    Singh, Prashant
    Wrede, Fredrik
    Hellander, Andreas
    Petzold, Linda
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (01)