Agent Identification Using a Sparse Bayesian Model

被引:2
|
作者
Duan, Huiping [1 ]
Li, Hongbin [2 ]
Xie, Jing [1 ]
Panikov, Nicolai S. [3 ]
Cui, Hong-Liang [4 ]
机构
[1] LC Pegasus Corp, Hillside, NJ 07205 USA
[2] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[3] Northeastern Univ, Dept Biol, Boston, MA 02115 USA
[4] NYU, Polytech Inst, Dept Phys, Brooklyn, NY 11201 USA
基金
美国国家科学基金会;
关键词
Agent identification; false alarm; linear mixture; mismatch; signature; sparse Bayesian model; spectral sensing;
D O I
10.1109/JSEN.2011.2130521
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Identifying agents in a linear mixture is a fundamental problem in spectral sensing applications including chemical and biological agent identification. In general, the size of the spectral signature library is usually much larger than the number of agents really present. Based on this fact, the sparsity of the mixing coefficient vector can be utilized to help improve the identification performance. In this paper, we propose a new agent identification method by using a sparse Bayesian model. The proposed iterative algorithm takes into account the nonnegativity of the abundance fractions and is proved to be convergent. Numerical studies with a set of ultraviolet (UV) to infrared (IR) spectra are carried out for demonstration. The effect of the signature mismatch is also studied using a group of terahertz (THz) spectra.
引用
收藏
页码:2556 / 2564
页数:9
相关论文
共 50 条
  • [1] Identification of nonlinear sparse networks using sparse Bayesian learning
    Jin, Junyang
    Yuan, Ye
    Pan, Wei
    Tomlin, Claire
    Webb, Alex A.
    Goncalves, Jorge
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [2] T–S Fuzzy Model Identification with Sparse Bayesian Techniques
    Limin Zhang
    Junpeng Li
    Hongjiu Yang
    Neural Processing Letters, 2019, 50 : 2945 - 2962
  • [3] Sparse Bayesian Nonlinear System Identification Using Variational Inference
    Jacobs, William R.
    Baldacchino, Tara
    Dodd, Tony
    Anderson, Sean R.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4172 - 4187
  • [4] Hyperspectral image unmixing using a sparse Bayesian model
    Chen, F.
    Wang, K.
    Tang, T. F.
    REMOTE SENSING LETTERS, 2014, 5 (07) : 642 - 651
  • [5] Using Bayesian networks to model agent relationships
    Banerjee, B
    Biswas, A
    Mundhe, M
    Debnath, S
    Sen, S
    APPLIED ARTIFICIAL INTELLIGENCE, 2000, 14 (09) : 867 - 879
  • [6] T-S Fuzzy Model Identification with Sparse Bayesian Techniques
    Zhang, Limin
    Li, Junpeng
    Yang, Hongjiu
    NEURAL PROCESSING LETTERS, 2019, 50 (03) : 2945 - 2962
  • [7] Model predictive control of switching systems based on sparse Bayesian identification
    Zhang, Zhonghua
    Wang, Liang
    Xu, Wei
    Bai, Yuanyuan
    NONLINEAR DYNAMICS, 2024, 112 (17) : 15483 - 15503
  • [8] Bayesian Sparse Topic Model
    Chien, Jen-Tzung
    Chang, Ying-Lan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2014, 74 (03): : 375 - 389
  • [9] Bayesian Sparse Topic Model
    Jen-Tzung Chien
    Ying-Lan Chang
    Journal of Signal Processing Systems, 2014, 74 : 375 - 389
  • [10] Sparse Bayesian learning using TMB (Template Model Builder)
    Helgoy, Ingvild M.
    Skaug, Hans J.
    Li, Yushu
    STATISTICS AND COMPUTING, 2024, 34 (05)