Combinatorial structures and Lie algebras of upper triangular matrices

被引:9
|
作者
Ceballos, M. [2 ]
Nunez, J. [2 ]
Tenorio, A. F. [1 ]
机构
[1] Univ Pablo Olavide, Escuela Politecn Super, Dpto Econ Metodos Cuantitativos & Ha Econ, Seville 41013, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Combinatorial structures; Maximal abelian dimension; Solvable Lie algebras; Abelian subalgebras; Faithful matrix representation; DIMENSION;
D O I
10.1016/j.aml.2011.09.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work shows how to associate the Lie algebra h(n), of upper triangular matrices, with a specific combinatorial structure of dimension 2, for n is an element of N. The properties of this structure are analyzed and characterized. Additionally, the results obtained here are applied to obtain faithful representations of solvable Lie algebras. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:514 / 519
页数:6
相关论文
共 50 条
  • [31] Product Zero Derivations on Strictly Upper Triangular Matrix Lie Algebras
    Zhengxin CHEN
    Liling GUO
    Journal of Mathematical Research with Applications, 2013, 33 (05) : 528 - 542
  • [32] The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2008, 16 (01): : 59 - 66
  • [33] Linear Lie centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5040 - 5051
  • [34] Lie triple centralizers of the algebra of dominant block upper triangular matrices
    Ghimire, Prakash
    Benavides, Magdalena
    King, Sheral
    Young, Lavona
    LINEAR & MULTILINEAR ALGEBRA, 2025, 73 (01): : 163 - 175
  • [35] LINEAR LIE CENTRALIZERS OF THE ALGEBRA OF STRICTLY BLOCK UPPER TRIANGULAR MATRICES
    Ghimire, Prakash
    OPERATORS AND MATRICES, 2021, 15 (01): : 303 - 311
  • [37] Lie Triple Derivations on Upper Triangular Matrices over a Commutative Ring
    Hai Ling LI Ying WANG School of Mathematical SciencesDalian University of TechnologyLiaoning PRChina
    数学研究与评论, 2010, 30 (03) : 415 - 422
  • [38] IMBEDDING OF ALGEBRAS IN ALGEBRAS OF TRIANGULAR MATRICES
    ANANIN, AZ
    MATHEMATICS OF THE USSR-SBORNIK, 1980, 36 (02): : 155 - 172
  • [39] Lie derivations of triangular algebras
    Cheung, WS
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (03): : 299 - 310
  • [40] Lie σ-derivations of triangular algebras
    Benkovic, Dominik
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2966 - 2983