Combinatorial structures and Lie algebras of upper triangular matrices

被引:9
|
作者
Ceballos, M. [2 ]
Nunez, J. [2 ]
Tenorio, A. F. [1 ]
机构
[1] Univ Pablo Olavide, Escuela Politecn Super, Dpto Econ Metodos Cuantitativos & Ha Econ, Seville 41013, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Combinatorial structures; Maximal abelian dimension; Solvable Lie algebras; Abelian subalgebras; Faithful matrix representation; DIMENSION;
D O I
10.1016/j.aml.2011.09.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work shows how to associate the Lie algebra h(n), of upper triangular matrices, with a specific combinatorial structure of dimension 2, for n is an element of N. The properties of this structure are analyzed and characterized. Additionally, the results obtained here are applied to obtain faithful representations of solvable Lie algebras. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:514 / 519
页数:6
相关论文
共 50 条
  • [1] TRIANGULAR CONFIGURATIONS AND LIE ALGEBRAS OF STRICTLY UPPER-TRIANGULAR MATRICES
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2014, 13 (01) : 62 - 70
  • [2] Group gradings on the Lie and Jordan algebras of upper triangular matrices
    Hitomi E.
    Koshlukov P.
    Yasumura F.
    São Paulo Journal of Mathematical Sciences, 2017, 11 (2) : 326 - 347
  • [3] Transposed Poisson structures on the Lie algebra of upper triangular matrices
    Kaygorodov, Ivan
    Khrypchenko, Mykola
    PORTUGALIAE MATHEMATICA, 2024, 81 (1-2) : 135 - 149
  • [4] Automorphisms of certain Lie algebras of upper triangular matrices over a commutative ring
    Cao, YA
    JOURNAL OF ALGEBRA, 1997, 189 (02) : 506 - 513
  • [5] Regular Hom-Lie structures on strictly upper triangular matrix Lie algebras
    Chen, Zhengxin
    Yu, Yalong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)
  • [6] Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring
    Wang, Dengyin
    Ou, Shikun
    Yu, Qiu
    LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (05): : 369 - 377
  • [7] Complete triangular structures and Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (09) : 1839 - 1851
  • [8] Triangular Structures on Flat Lie Algebras
    Bahayou, Amine
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 875 - 886
  • [9] REPRESENTING FILIFORM LIE ALGEBRAS MINIMALLY AND FAITHFULLY BY STRICTLY UPPER-TRIANGULAR MATRICES
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (04)
  • [10] Nonlinear Lie derivations on upper triangular matrices
    Chen, Lin
    Zhang, Jianhua
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (06): : 725 - 730