Keyphrase Generation With CopyNet and Semantic Web

被引:2
|
作者
Zhu, Xun [1 ,2 ]
Lyu, Chen [3 ]
Ji, Donghong [1 ]
机构
[1] Wuhan Univ, Sch Cyber Sci & Engn, Minist Educ, Key Lab Aerosp Informat Secur & Trusted Comp, Wuhan 430072, Peoples R China
[2] Jianghan Univ, Sch Math & Comp Sci, Wuhan 430056, Peoples R China
[3] Guangdong Univ Foreign Studies, Collaborat Innovat Ctr Language Res & Serv, Guangzhou 510420, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷
基金
中国国家自然科学基金; 国家教育部科学基金资助;
关键词
Task analysis; Semantic Web; Decoding; Semantics; Vocabulary; Transforms; Neural networks; Keyphrase generation; encoder-decoder model; copying mechanism; semantic web;
D O I
10.1109/ACCESS.2020.2977508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Keyphrases provide core information for users to understand the document. Most previous works utilize machine learning based methods for keyphrases extraction and achieve promising performance. However, these methods focus on identify keyphrases from the input text, and can not extract keyphrases that do not appear in the text. In this paper, we present an encoder-decoder framework, which incorporating copying mechanism, to generate keyphrases for the given text. This framework (CopyNet) integrates the generation part and copying part. The generation part generates the keyphrase from the predefined vocabulary, and the copy part gets the keyphrases from the source text. Furthermore, we improve the CopyNet by using different probability of the two parts. To incorporate more related information for keyphrase generation, the automatically built keyphrase semantic web is merged into the dataset to participate in the training process of the neural network. Semantic similarity based and word co-occurrence based methods are used for keyphrase semantic web construction. We build a large-scale biomedical keyphrase dataset to evaluate the system performance. Experiments show that our improved CopyNet can achieve better performance with different portions of the generation and copying part, and the incorporation of the semantic web also effectively improves the keyphrase generation.
引用
收藏
页码:44202 / 44210
页数:9
相关论文
共 50 条
  • [21] Automatic generation of metadata: contribution to a semantic web
    Hora Gomes Ferreira, Eveline Cruz
    Kofuji, Sergio Takeo
    ACTAS DA 1A CONFERENCIA IBERICA DE SISTEMAS E TECNOLOGIAS DE INFORMACAO, VOL II, 2006, : 233 - 248
  • [22] OntoSmartResource: An industrial resource generation in semantic web
    Khriyenko, E
    Terziyan, V
    2004 2ND IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS: COLLABORATIVE AUTOMATION - ONE KEY FOR INTELLIGENT INDUSTRIAL ENVIRONMENTS, 2004, : 175 - 179
  • [23] Automatic fuzzy ontology generation for Semantic Web
    Tho, QT
    Hui, SC
    Fong, ACM
    Cao, TH
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (06) : 842 - 856
  • [24] Natural Language Generation in the context of the Semantic Web
    Bouayad-Agha, Nadjet
    Casamayor, Gerard
    Wanner, Leo
    SEMANTIC WEB, 2014, 5 (06) : 493 - 513
  • [25] An Empirical Study on Neural Keyphrase Generation
    Meng, Rui
    Yuan, Xingdi
    Wang, Tong
    Zhao, Sanqiang
    Trischler, Adam
    He, Daqing
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 4985 - 5007
  • [26] Keyphrase Generation: A Text Summarization Struggle
    Cano, Erion
    Bojar, Ondfej
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 666 - 672
  • [27] Keyphrase Generation for Scientific Document Retrieval
    Boudin, Florian
    Gallina, Ygor
    Aizawa, Akiko
    58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), 2020, : 1118 - 1126
  • [28] Incorporating Linguistic Constraints into Keyphrase Generation
    Zhao, Jing
    Zhang, Yuxiang
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5224 - 5233
  • [29] Improved Automatic Keyphrase Extraction by Using Semantic Information
    Wang, XiaoLing
    Mu, DeJun
    Fang, Jun
    INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL 1, PROCEEDINGS, 2008, : 1061 - 1065
  • [30] Keyphrase Cloud Generation of Broadcast News
    Marujo, Luis
    Viveiros, Marcio
    Neto, Joao P.
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2404 - +