Some Results of Incidence Coloring on Generalized Petersen Graphs

被引:0
|
作者
Ding, Kun-Fu [1 ]
Pai, Kung-Jui [1 ]
Chang, Jou-Ming [2 ]
Tsaur, Rueiher [3 ]
机构
[1] Ming Chi Univ Technol, Dept Ind Engn & Management, New Taipei, Taiwan
[2] Natl Taipei Univ Business, Inst Informat & Decis Sci, Taipei, Taiwan
[3] Lunghwa Univ Sci & Technol, Dept Comp Informat & Network Engn, Guishan, Taoyuan County, Taiwan
关键词
incidence coloring; generalized Petersen graphs; cubic graphs; NUMBER;
D O I
10.3233/978-1-61499-484-8-85
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let chi(i)(G) denote the incidence coloring number of a graph G. In this paper, we study the incidence coloring on generalized Petersen graphs GP(n, k). We first assure that 4 <= chi(i)(GP(n, k)) <= 5. Furthermore, we provide the following results: (i) chi(i)(GP(n, k)) = 5 if n is odd, (ii) chi(i)(GP(n, 2)) = 5, and (iii) chi(i)(GP(n, k)) = 4 if n equivalent to 0 (mod 4) and k is odd.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [21] Edge Metric Dimension of Some Generalized Petersen Graphs
    Vladimir Filipović
    Aleksandar Kartelj
    Jozef Kratica
    Results in Mathematics, 2019, 74
  • [22] Canonical double covers of generalized Petersen graphs, and double generalized Petersen graphs
    Qin, Yan-Li
    Xia, Binzhou
    Zhou, Sanming
    JOURNAL OF GRAPH THEORY, 2021, 97 (01) : 70 - 81
  • [23] k-Metric Antidimension of Some Generalized Petersen Graphs
    Kratica, Jozef
    Kovacevic-Vujcic, Vera
    Cangalovic, Mirjana
    FILOMAT, 2019, 33 (13) : 4085 - 4093
  • [24] Some results on fractional edge coloring of graphs
    Wang, Jihui
    Liu, Guizhen
    ARS COMBINATORIA, 2007, 83 : 249 - 255
  • [25] Some New Results on δ(k) -Coloring of Graphs
    Ellumkalayil M.T.
    Samuel L.C.
    Naduvath S.
    Journal of Interconnection Networks, 2023, 23 (03)
  • [26] On incidence coloring for some graphs of maximum degree 4
    Fahimi, Hamed
    Omoomi, Behnaz
    ARS COMBINATORIA, 2016, 125 : 33 - 45
  • [27] Domination in generalized Petersen graphs
    Bohdan Zelinka
    Czechoslovak Mathematical Journal, 2002, 52 : 11 - 16
  • [28] GROUPS OF GENERALIZED PETERSEN GRAPHS
    FRUCHT, R
    GRAVER, JE
    WATKINS, ME
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (SEP): : 211 - &
  • [29] On the diameter of generalized Petersen graphs
    Loudiki, Laila
    Kchikech, Mustapha
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1035 - 1042
  • [30] OPTIMAL GENERALIZED PETERSEN GRAPHS
    BEENKER, GFM
    VANLINT, JH
    PHILIPS JOURNAL OF RESEARCH, 1988, 43 (02) : 129 - 136