Some Results of Incidence Coloring on Generalized Petersen Graphs

被引:0
|
作者
Ding, Kun-Fu [1 ]
Pai, Kung-Jui [1 ]
Chang, Jou-Ming [2 ]
Tsaur, Rueiher [3 ]
机构
[1] Ming Chi Univ Technol, Dept Ind Engn & Management, New Taipei, Taiwan
[2] Natl Taipei Univ Business, Inst Informat & Decis Sci, Taipei, Taiwan
[3] Lunghwa Univ Sci & Technol, Dept Comp Informat & Network Engn, Guishan, Taoyuan County, Taiwan
关键词
incidence coloring; generalized Petersen graphs; cubic graphs; NUMBER;
D O I
10.3233/978-1-61499-484-8-85
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let chi(i)(G) denote the incidence coloring number of a graph G. In this paper, we study the incidence coloring on generalized Petersen graphs GP(n, k). We first assure that 4 <= chi(i)(GP(n, k)) <= 5. Furthermore, we provide the following results: (i) chi(i)(GP(n, k)) = 5 if n is odd, (ii) chi(i)(GP(n, 2)) = 5, and (iii) chi(i)(GP(n, k)) = 4 if n equivalent to 0 (mod 4) and k is odd.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 50 条
  • [1] On the total coloring of generalized Petersen graphs
    Dantas, S.
    de Figueiredo, C. M. H.
    Mazzuoccolo, G.
    Preissmann, M.
    dos Santos, V. F.
    Sasaki, D.
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1471 - 1475
  • [2] On δ(k)-coloring of generalized Petersen graphs
    Ellumkalayil, Merlin Thomas
    Naduvath, Sudev
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [3] INJECTIVE COLORING OF GENERALIZED PETERSEN GRAPHS
    Li, Zepeng
    Shao, Zehui
    Zhu, Enqiang
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 1 - 12
  • [4] On graceful coloring of generalized Petersen graphs
    Kristiana, A. I.
    Setyawan, D.
    Albirri, E. R.
    Prihandini, R. M.
    Alfarisi, R.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (07)
  • [5] Injective edge coloring of generalized Petersen graphs
    Li, Yanyi
    Chen, Lily
    AIMS MATHEMATICS, 2021, 6 (08): : 7929 - 7943
  • [6] Star edge coloring of generalized Petersen graphs
    Omoomi, Behnaz
    Dastjerdi, Marzieh Vahid
    arXiv,
  • [7] Strong Edge Coloring of Generalized Petersen Graphs
    Chen, Ming
    Miao, Lianying
    Zhou, Shan
    MATHEMATICS, 2020, 8 (08)
  • [8] Acyclic 3-coloring of generalized Petersen graphs
    Zhu, Enqiang
    Li, Zepeng
    Shao, Zehui
    Xu, Jin
    Liu, Chanjuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (02) : 902 - 911
  • [9] Acyclic 3-coloring of generalized Petersen graphs
    Enqiang Zhu
    Zepeng Li
    Zehui Shao
    Jin Xu
    Chanjuan Liu
    Journal of Combinatorial Optimization, 2016, 31 : 902 - 911
  • [10] ON THE TOUGHNESS OF SOME GENERALIZED PETERSEN GRAPHS
    FERLAND, K
    ARS COMBINATORIA, 1993, 36 : 65 - 88