Multi-material 3D bioprinting of porous constructs for cartilage regeneration

被引:90
|
作者
Ruiz-Cantu, Laura [1 ,2 ]
Gleadall, Andrew [3 ]
Faris, Callum [4 ]
Segal, Joel [5 ]
Shakesheff, Kevin [2 ]
Yang, Jing [2 ]
机构
[1] Univ Nottingham, Fac Engn, Ctr Addit Mfg, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Nottingham, Fac Sci, Regenerat Med & Cellular Therapies Div, Univ Pk, Nottingham NG7 2RD, England
[3] Univ Loughborough, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
[4] Poole Hosp, Dept Otorhinolaryngol & Facial Plast Reconstruct, Poole BH15 2JB, Dorset, England
[5] Univ Nottingham, Fac Engn, Adv Mfg Technol Res Grp, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Tissue engineering; Cartilage; Chondrocytes; Bioprinting; 3D printing; Surface porosity; Polycaprolactone; GelMA; Multi-material 3D printing; TISSUE-ENGINEERED CARTILAGE; IN-VITRO; HYDROGELS; CELLS; RECONSTRUCTION; CHONDROCYTES; ALGINATE;
D O I
10.1016/j.msec.2019.110578
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] 3D bioprinting of photocrosslinkable hydrogel constructs
    Pereira, Ruben F.
    Bartolo, Paulo J.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (48)
  • [22] 3D Bioprinting of branched vessel constructs
    Koc, B.
    Kucukgul, C.
    Ozler, S. B.
    Altunbek, M.
    Sen, O.
    Culha, M.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2014, 8 : 95 - 96
  • [23] 3D bioprinting dual-factor releasing and gradient-structured constructs ready to implant for anisotropic cartilage regeneration
    Sun, Ye
    You, Yongqing
    Jiang, Wenbo
    Wang, Bo
    Wu, Qiang
    Dai, Kerong
    SCIENCE ADVANCES, 2020, 6 (37)
  • [24] Emerging Technologies in Multi-Material Bioprinting
    Ravanbakhsh, Hossein
    Karamzadeh, Vahid
    Bao, Guangyu
    Mongeau, Luc
    Juncker, David
    Zhang, Yu Shrike
    ADVANCED MATERIALS, 2021, 33 (49)
  • [25] Bioprinting of 3D Functional Tissue Constructs
    He, Jiankang
    Mao, Mao
    Li, Xiao
    Chua, Chee Kai
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2021, 7 (03) : 1 - 2
  • [26] Innovative Cartilage Regeneration for in situ Co-axial 3D Bioprinting
    Duchi, S.
    Onofrillo, C.
    O'Connell, C. D.
    Blanchard, R.
    Quigley, A. F.
    Kapsa, R. M.
    Wallace, G. G.
    Di Bella, C.
    Choong, P. F.
    TISSUE ENGINEERING PART A, 2017, 23 : S22 - S22
  • [27] Mechanically interlocked 3D multi-material micromachines
    C. C. J. Alcântara
    F. C. Landers
    S. Kim
    C. De Marco
    D. Ahmed
    B. J. Nelson
    S. Pané
    Nature Communications, 11
  • [28] A transplantable pre-vascularized tissue platform by using a multi-material microfluidic 3D bioprinting method
    Kim, Donghwan
    Yong, Uijung
    Choi, Yoo-mi
    Kim, Daekeun
    Jang, Jinah
    TISSUE ENGINEERING PART A, 2022, 28 : 639 - 639
  • [29] Mechanically interlocked 3D multi-material micromachines
    Alcantara, C. C. J.
    Landers, F. C.
    Kim, S.
    De Marco, C.
    Ahmed, D.
    Nelson, B. J.
    Pane, S.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Parallel, Multi-Material Electrohydrodynamic 3D Nanoprinting
    Chen, Mojun
    Lee, Heekwon
    Yang, Jihyuk
    Xu, Zhaoyi
    Huang, Nan
    Chan, Barbara Pui
    Kim, Ji Tae
    SMALL, 2020, 16 (13)