Multi-material 3D bioprinting of porous constructs for cartilage regeneration

被引:90
|
作者
Ruiz-Cantu, Laura [1 ,2 ]
Gleadall, Andrew [3 ]
Faris, Callum [4 ]
Segal, Joel [5 ]
Shakesheff, Kevin [2 ]
Yang, Jing [2 ]
机构
[1] Univ Nottingham, Fac Engn, Ctr Addit Mfg, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Nottingham, Fac Sci, Regenerat Med & Cellular Therapies Div, Univ Pk, Nottingham NG7 2RD, England
[3] Univ Loughborough, Wolfson Sch Mech Elect & Mfg Engn, Loughborough LE11 3TU, Leics, England
[4] Poole Hosp, Dept Otorhinolaryngol & Facial Plast Reconstruct, Poole BH15 2JB, Dorset, England
[5] Univ Nottingham, Fac Engn, Adv Mfg Technol Res Grp, Univ Pk, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
Tissue engineering; Cartilage; Chondrocytes; Bioprinting; 3D printing; Surface porosity; Polycaprolactone; GelMA; Multi-material 3D printing; TISSUE-ENGINEERED CARTILAGE; IN-VITRO; HYDROGELS; CELLS; RECONSTRUCTION; CHONDROCYTES; ALGINATE;
D O I
10.1016/j.msec.2019.110578
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] DATA PROCESSING FOR MULTI-MATERIAL 3D BIOPRINTING
    Lee, Jia Min
    Yeong, Wai Yee
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING, 2018, : 164 - 169
  • [2] Development of a Disposable Single-Nozzle Printhead for 3D Bioprinting of Continuous Multi-Material Constructs
    Cameron, Tiffany
    Naseri, Emad
    MacCallum, Ben
    Ahmadi, Ali
    MICROMACHINES, 2020, 11 (05)
  • [3] The emerging role of microfluidics in multi-material 3D bioprinting
    Richard, Cynthia
    Neild, Adrian
    Cadarso, Victor J.
    LAB ON A CHIP, 2020, 20 (12) : 2044 - 2056
  • [4] Accurate Calibration in Multi-Material 3D Bioprinting for Tissue Engineering
    Sodupe-Ortega, Enrique
    Sanz-Garcia, Andres
    Pernia-Espinoza, Alpha
    Escobedo-Lucea, Carmen
    MATERIALS, 2018, 11 (08)
  • [5] In situ 3D Bioprinting for cartilage regeneration
    Di Bella, C.
    O'Connell, C.
    Blanchard, R.
    Duchi, S.
    Ryan, S.
    Yue, Z.
    Onofrillo, C.
    Wallace, G.
    Choong, P.
    TISSUE ENGINEERING PART A, 2017, 23 : S9 - S9
  • [6] 3D Bioprinting Constructs to Facilitate Skin Regeneration
    Daikuara, Luciana Y.
    Chen, Xifang
    Yue, Zhilian
    Skropeta, Danielle
    Wood, Fiona M.
    Fear, Mark W.
    Wallace, Gordon G.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (03)
  • [7] Development of a low-cost quad-extrusion 3D bioprinting system for multi-material tissue constructs
    Zgeib, Ralf
    Wang, Xiaofeng
    Zaeri, Ahmadreza
    Zhang, Fucheng
    Cao, Kai
    Chang, Robert C.
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2024, 10 (01) : 294 - 311
  • [8] DESIGNING AN INTERCHANGEABLE MULTI-MATERIAL NOZZLE SYSTEM FOR 3D BIOPRINTING PROCESS
    Nelson, Cartwright
    Tuladhar, Slesha
    Habib, Md Ahasan
    PROCEEDINGS OF THE ASME 2021 16TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2021), VOL 1, 2021,
  • [9] 3D Bioprinting of Multi-Material Decellularized Liver Matrix Hydrogel at Physiological Temperatures
    Khati, Vamakshi
    Ramachandraiah, Harisha
    Pati, Falguni
    Svahn, Helene A.
    Gaudenzi, Giulia
    Russom, Aman
    BIOSENSORS-BASEL, 2022, 12 (07):
  • [10] Recent advances in 3D bioprinting for the regeneration of functional cartilage
    Ji Xiongfa
    Zhu Hao
    Zhao Liming
    Xiao Jun
    REGENERATIVE MEDICINE, 2018, 13 (01) : 73 - 87