A new framework for multi-parameter regularization

被引:13
|
作者
Gazzola, Silvia [1 ]
Reichel, Lothar [2 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, Padua, Italy
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Ill-posed problems; Multi-parameter Tikhonov method; Arnoldi-Tikhonov method; Discrepancy principle; ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; L-CURVE; PARAMETER;
D O I
10.1007/s10543-015-0595-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes a new approach for choosing the regularization parameters in multi-parameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov subspaces of increasing dimension. The latter methods regularize by choosing appropriate regularization terms and the dimension of the Krylov subspace. Our investigation focuses on selecting a proper set of regularization parameters that satisfies the discrepancy principle and maximizes a suitable quantity, whose size reflects the quality of the computed approximate solution. Theoretical results are shown and illustrated by numerical experiments.
引用
收藏
页码:919 / 949
页数:31
相关论文
共 50 条
  • [41] Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals
    Lu, Guozhen
    Shen, Jiawei
    Zhang, Lu
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 281 (1388) : 1 - +
  • [42] MULTI-PARAMETER SPECTRAL THEORY
    BROWNE, PJ
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (03) : 249 - 257
  • [43] GENERALIZED MULTI-PARAMETER RESOLVENTS
    SHONKWIL.R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A660 - A661
  • [44] Estimation of thermophysical properties of composites using multi-parameter estimation and Zeroth-order regularization
    Aviles-Ramos, C
    Haji-Sheikh, A
    INVERSE PROBLEMS IN ENGINEERING, 2001, 9 (05): : 507 - 536
  • [45] MULTI-PARAMETER STIELTJES TRANSFORMATIONS
    SHONKWIL.R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (07): : A613 - A613
  • [46] MULTI-PARAMETER BURAU REPRESENTATIONS
    Al-Tahan, Madline
    Abdulrahim, Mohammad N.
    Habre, Samer S.
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (01): : 91 - 98
  • [47] MULTI-PARAMETER DATA SORTING
    LECLAIRE, RV
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (04): : 557 - 557
  • [48] MULTI-PARAMETER COMPUTERIZED ELECTROMYOGRAPHY
    TOIVAKKA, EI
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1982, 53 (05): : P71 - P71
  • [49] Multi-parameter automodels and their applications
    Hardouin, Cecile
    Yao, Jian-Feng
    BIOMETRIKA, 2008, 95 (02) : 335 - 349
  • [50] A MULTI-PARAMETER BIFURCATION THEOREM
    HUILGOL, RR
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (06) : 1189 - 1194