Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors

被引:36
|
作者
Granata, M. [1 ]
Amato, A. [1 ]
Cagnoli, G. [2 ]
Coulon, M. [1 ]
Degallaix, J. [1 ]
Forest, D. [1 ]
Mereni, L. [1 ]
Michel, C. [1 ]
Pinard, L. [1 ]
Sassolas, B. [1 ]
Teillon, J. [1 ]
机构
[1] Univ Lyon, CNRS, Lab Mat Avances IP21, F-69622 Villeurbanne, France
[2] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Inst LumiereMat, F-69622 Villeurbanne, France
关键词
MECHANICAL LOSS; INTERNAL-FRICTION; TEST MASSES; FILMS;
D O I
10.1364/AO.377293
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Coating thermal noise is a fundamental limit for precision experiments based on optical and quantum transducers. In this review, after a brief overview of the techniques for coating thermal noise measurements, we present the latest worldwide research activity on low-noise coatings, with a focus on the results obtained at the Laboratoire des Materiaux Avances. We report new updated values for the Ta2O5, Ta2O5 TiO2, and SiO2 coatings of the Advanced LIGO, Advanced Virgo, and KAGRA detectors, and new results from sputtered Nb2O5, TiO2 Nb2O5, Ta2O5 ZrO2, MgF2, AlF3, and silicon nitride coatings. Amorphous silicon, crystalline coatings, high-temperature deposition, multi-material coatings, and composite layers are also briefly discussed, together with the latest developments in structural analyses and models. (C) 2020 Optical Society of America
引用
收藏
页码:A229 / A235
页数:7
相关论文
共 50 条
  • [41] Seismic gravity-gradient noise in interferometric gravitational-wave detectors
    Hughes, SA
    Thorne, KS
    PHYSICAL REVIEW D, 1998, 58 (12)
  • [42] Nonlinear Noise Cleaning in Gravitational-Wave Detectors With Convolutional Neural Networks
    Yu, Hang
    Adhikari, Rana X.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [43] Shot noise in gravitational-wave detectors with Fabry-Perot arms
    Lyons, TT
    Regehr, MW
    Raab, FJ
    APPLIED OPTICS, 2000, 39 (36) : 6761 - 6770
  • [44] Machine-learning nonstationary noise out of gravitational-wave detectors
    Vajente, G.
    Huang, Y.
    Isi, M.
    Driggers, J. C.
    Kissel, J. S.
    Szczepanczyk, M. J.
    Vitale, S.
    PHYSICAL REVIEW D, 2020, 101 (04)
  • [45] Human gravity-gradient noise in interferometric gravitational-wave detectors
    Thorne, KS
    Winstein, CJ
    PHYSICAL REVIEW D, 1999, 60 (08):
  • [46] The Gravitational-wave physics Ⅱ: Progress
    Ligong Bian
    RongGen Cai
    Shuo Cao
    Zhoujian Cao
    He Gao
    ZongKuan Guo
    Kejia Lee
    Di Li
    Jing Liu
    Youjun Lu
    Shi Pi
    JianMin Wang
    ShaoJiang Wang
    Yan Wang
    Tao Yang
    XingYu Yang
    Shenghua Yu
    Xin Zhang
    Science China(Physics,Mechanics & Astronomy), 2021, Mechanics & Astronomy)2021 (12) : 22 - 71
  • [47] The Gravitational-wave physics Ⅱ: Progress
    Ligong Bian
    Rong-Gen Cai
    Shuo Cao
    Zhoujian Cao
    He Gao
    Zong-Kuan Guo
    Kejia Lee
    Di Li
    Jing Liu
    Youjun Lu
    Shi Pi
    Jian-Min Wang
    Shao-Jiang Wang
    Yan Wang
    Tao Yang
    Xing-Yu Yang
    Shenghua Yu
    Xin Zhang
    Science China(Physics,Mechanics & Astronomy), 2021, 64 (12) : 22 - 71
  • [48] Broadband quantum noise reduction in future long baseline gravitational-wave detectors via EPR entanglement
    Beckey, Jacob L.
    Ma, Yiqiu
    Boyer, Vincent
    Miao, Haixing
    PHYSICAL REVIEW D, 2019, 100 (08)
  • [49] Quantum measurements in gravitational-wave detectors
    Khalili, F. Ya
    PHYSICS-USPEKHI, 2016, 59 (10) : 968 - 996
  • [50] Comparison of advanced gravitational-wave detectors
    Harry, GM
    Houser, JL
    Strain, KA
    PHYSICAL REVIEW D, 2002, 65 (08) : 820011 - 8200115