A Machine Learning-Based Fall Risk Assessment Model for Inpatients

被引:14
|
作者
Liu, Chia-Hui [1 ,2 ]
Hu, Ya-Han [4 ,5 ]
Lin, Yu-Hsiu [2 ,3 ]
机构
[1] Ditmanson Med Fdn, ChiaYi Christian Hosp, Dept Nursing, Chiayi, Taiwan
[2] Natl Chung Cheng Univ, Dept Informat Management, Chiayi, Taiwan
[3] Natl Chung Cheng Univ, Ctr Innovat Res Aging Soc, Chiayi, Taiwan
[4] Natl Cent Univ, Taoyuan City, Taiwan
[5] Natl Cheng Kung Univ, MOST Biomed Res Ctr, Tainan, Tainan, Taiwan
关键词
Classification; Fall Risk assessment; Inpatient fall; Machine learning; ASSESSMENT TOOL; PREDICTION;
D O I
10.1097/CIN.0000000000000727
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Falls are one of the most common accidents among inpatients and may result in extended hospitalization and increased medical costs. Constructing a highly accurate fall prediction model could effectively reduce the rate of patient falls, further reducing unnecessary medical costs and patient injury. This study applied data mining techniques on a hospital's electronic medical records database comprising a nursing information system to construct inpatient-fall-prediction models for use during various stages of inpatient care. The inpatient data were collected from 15 inpatient wards. To develop timely and effective fall prediction models for inpatients, we retrieved the data of multiple-time assessment variables at four points during hospitalization. This study used various supervised machine learning algorithms to build classification models. Four supervised learning and two classifier ensemble techniques were selected for model development. The results indicated that Bagging+RF classifiers yielded optimal prediction performance at all four points during hospitalization. This study suggests that nursing personnel should be aware of patients' risk factors based on comprehensive fall risk assessment and provide patients with individualized fall prevention interventions to reduce inpatient fall rates.
引用
收藏
页码:450 / 459
页数:10
相关论文
共 50 条
  • [21] Machine Learning-based Fall Detection in Geriatric Healthcare Systems
    Ramachandra, Anita
    Adarsh, R.
    Pahwa, Piyush
    Anupama, K. R.
    2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (ANTS), 2018,
  • [22] An Efficient Design of a Machine Learning-Based Elderly Fall Detector
    Nguyen, L. P.
    Saleh, M.
    Jeannes, R. Le Bouquin
    INTERNET OF THINGS (IOT) TECHNOLOGIES FOR HEALTHCARE, HEALTHYIOT 2017, 2018, 225 : 34 - 41
  • [23] A Machine Learning-based Self-risk Assessment Technique for Cervical Cancer
    Ramzan, Zeeshan
    Hassan, Muhammad Awais
    Asif, H. M. Shahzad
    Farooq, Amjad
    CURRENT BIOINFORMATICS, 2021, 16 (02) : 315 - 332
  • [24] Induced bioresistance via BNP detection for machine learning-based risk assessment
    So, Seth
    Khalaf, Aya
    Yi, Xinruo
    Herring, Connor
    Zhang, Yingze
    Simon, Marc A.
    Akcakaya, Murat
    Lee, SeungHee
    Yun, Minhee
    BIOSENSORS & BIOELECTRONICS, 2021, 175
  • [25] A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
    Sajedi-Hosseini, Farzaneh
    Malekian, Arash
    Choubin, Bahram
    Rahmati, Omid
    Cipullo, Sabrina
    Coulon, Frederic
    Pradhan, Biswajeet
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 644 : 954 - 962
  • [26] Machine Learning-Based Evaluation of Suicide Risk Assessment in Crisis Counseling Calls
    Imel, Zac E.
    Pace, Brian
    Pendergraft, Brad
    Pruett, Jordan
    Tanana, Michael
    Soma, Christina S.
    Comtois, Kate A.
    Atkins, David C.
    PSYCHIATRIC SERVICES, 2024, 75 (11) : 1068 - 1074
  • [27] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [28] Evaluating Methods to Mitigate the Bias for Machine Learning-Based Cardiovascular Risk Model
    Li, Fuchen
    Zhao, Juan
    Wu, Patrick
    Ong, Henry H.
    Wei, Wei-qi
    Peterson, Josh F.
    CIRCULATION, 2022, 146
  • [29] Machine Learning-Based EDFA Gain Model
    You, Yuren
    Jiang, Zhiping
    Janz, Christopher
    2018 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2018,
  • [30] Machine Learning-based Techniques for Fall Detection in Geriatric Healthcare Systems
    Ramachandran, Anita
    Adarsh, R.
    Pahwa, Piyush
    Anupama, K. R.
    2018 NINTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY IN MEDICINE AND EDUCATION (ITME 2018), 2018, : 232 - 237