Metrological scanning probe microscope based on a quartz tuning fork detector

被引:3
|
作者
Babic, Bakir [1 ]
Freund, Christopher H. [1 ]
Herrmann, Jan [1 ]
Lawn, Malcolm A. [1 ]
Miles, John [1 ]
机构
[1] Natl Measurement Inst Australia, Lindfield, NSW 2070, Australia
来源
关键词
metrological scanning probe microscope; atomic force microscopy; noncontact mode; quartz tuning fork; frequency modulation; CALIBRATION;
D O I
10.1117/1.JMM.11.1.011003
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We give an overview of the design of a metrological scanning probe microscope (mSPM) currently under development at the National Measurement Institute Australia (NMIA) and report on preliminary results on the implementation of key components. The mSPM is being developed as part of the nanometrology program at NMIA and will provide the link in the traceability chain between dimensional measurements made at the nanometer scale and the realization of the International System of Units (SI) meter at NMIA. The instrument is based on a quartz tuning fork (QTF) detector and will provide a measurement volume of 100 mu m x 100 mu m x 25 mu m with a target uncertainty of 1 nm for the position measurement. Characterization results of the nanopositioning stage and the QTF detector are presented along with an outline of the method for tip mounting on the QTFs. Initial imaging results are also presented. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JMM.11.1.011003]
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Local geometric error corrections for a metrological scanning probe microscope
    Babic, Bakir
    Coleman, Victoria A.
    Herrmann, Jan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (05)
  • [32] Lithographically defined polymer tips for quartz tuning fork based scanning force microscopes
    Akiyama, T
    Staufer, U
    de Rooij, NF
    Howald, L
    Scandella, L
    MICROELECTRONIC ENGINEERING, 2001, 57-8 : 769 - 773
  • [33] Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator
    Li, Quanfeng
    Lu, Qingyou
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (05):
  • [34] Introduction to the quartz tuning fork
    Friedt, J.-M
    Carry, E.
    AMERICAN JOURNAL OF PHYSICS, 2007, 75 (05) : 415 - 422
  • [35] Traceable nanoscale length metrology using a metrological Scanning Probe Microscope
    Lawn, Malcolm
    Herrmann, Jan
    Freund, Christopher H.
    Miles, John R.
    Gray, Malcolm
    Shaddock, Daniel
    Coleman, Victoria A.
    Jaemting, Asa K.
    SCANNING MICROSCOPY 2010, 2010, 7729
  • [36] Quartz tuning fork in helium
    Pentti, E. M.
    Tuoriniemi, J. T.
    Salmela, A. J.
    Sebedash, A. P.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 150 (3-4) : 555 - 560
  • [37] Quartz Tuning Fork in Helium
    E. M. Pentti
    J. T. Tuoriniemi
    A. J. Salmela
    A. P. Sebedash
    Journal of Low Temperature Physics, 2008, 150 : 555 - 560
  • [38] Quartz tuning fork biosensor
    Su, XD
    Dai, CC
    Zhang, J
    O'Shea, SJ
    BIOSENSORS & BIOELECTRONICS, 2002, 17 (1-2): : 111 - 117
  • [39] Quartz Enhanced Photoacoustic Spectroscopy Based on a Custom Quartz Tuning Fork
    Duquesnoy, Maxime
    Aoust, Guillaume
    Melkonian, Jean-Michel
    Levy, Raphael
    Raybaut, Myriam
    Godard, Antoine
    SENSORS, 2019, 19 (06):
  • [40] Quartz tuning fork based microwave impedance microscopy
    Cui, Yong-Tao
    Ma, Eric Yue
    Shen, Zhi-Xun
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (06):