Reconciliation of Mental Concepts with Graph Neural Networks

被引:0
|
作者
Wendlinger, Lorenz [1 ]
Huebscher, Gerd [2 ]
Ekelhart, Andreas [3 ]
Granitzer, Michael [1 ]
机构
[1] Univ Passau, Passau, Germany
[2] Hubscher & Partner Patentanwalte GmbH, Linz, Austria
[3] SBA Res, Floragasse 7, Vienna, Austria
关键词
Knowledge graph; Link prediction; Graph neural networks;
D O I
10.1007/978-3-031-12426-6_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the digital age, knowledge processes can be formalized and simplified using task management systems. As they evolve, so must the underlying schemata to retain harmony and concurrency with the real world. In this work we present a graph neural network model that can help in reconciling these data. It can do so by leveraging a novel propagation rule that does not presume reciprocal dependency but is able to represent it still. Thereby it can predict structures in the form of usage links with high accuracy and assist in the reconstruction of missing information. We evaluate this model on a new knowledge management dataset and show that it is superior to traditional embedding methods. Further, we show that it outperforms related work in an established general link prediction task.
引用
收藏
页码:133 / 146
页数:14
相关论文
共 50 条
  • [31] Convolutional Graph Neural Networks
    Gama, Fernando
    Marques, Antonio G.
    Leus, Geert
    Ribeiro, Alejandro
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 452 - 456
  • [32] Streaming Graph Neural Networks
    Ma, Yao
    Guo, Ziyi
    Ren, Zhaochun
    Tang, Jiliang
    Yin, Dawei
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 719 - 728
  • [33] Graph Neural Networks in TensorFlow
    Perozzi, Bryan
    Abu-El-Haija, Sami
    Tsitsulin, Anton
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 5786 - 5787
  • [34] Neural networks and graph theory
    许进
    保铮
    Science in China(Series F:Information Sciences), 2002, (01) : 1 - 24
  • [35] Hyperbolic Graph Neural Networks
    Liu, Qi
    Nickel, Maximilian
    Kiela, Douwe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [36] Neural networks and graph theory
    Jin Xu
    Zheng Bao
    Science in China Series F: Information Sciences, 2002, 45 (1): : 1 - 24
  • [37] Orthogonal Graph Neural Networks
    Guo, Kai
    Zhou, Kaixiong
    Hu, Xia
    Li, Yu
    Chang, Yi
    Wang, Xin
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3996 - 4004
  • [38] Neural networks and graph theory
    Xu, J
    Bao, Z
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2002, 45 (01): : 1 - 24
  • [39] Clenshaw Graph Neural Networks
    Guo, Yuhe
    Wei, Zhewei
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 614 - 625
  • [40] Schatten Graph Neural Networks
    Liu, Youfa
    Chen, Yongyong
    Chen, Guo
    Zhang, Jiawei
    IEEE ACCESS, 2022, 10 : 56482 - 56492