Nonadiabatic quantum dynamics without potential energy surfaces

被引:13
|
作者
Albareda, Guillermo [1 ,2 ,3 ]
Kelly, Aaron [1 ,2 ,4 ]
Rubio, Angel [1 ,2 ,5 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Ctr Free Electron Laser Sci, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Univ Barcelona, Inst Theoret & Computat Chem, Marti I Franques 1-11, E-08028 Barcelona, Spain
[4] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[5] Flatiron Inst, Ctr Computat Quantum Phys CCQ, 162 Fifth Ave, New York, NY 10010 USA
来源
PHYSICAL REVIEW MATERIALS | 2019年 / 3卷 / 02期
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
MOLECULAR-DYNAMICS; ALGORITHM;
D O I
10.1103/PhysRevMaterials.3.023803
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present an ab initio algorithm for quantum dynamics simulations that reformulates the traditional "curse of dimensionality" that plagues all state-of-the-art techniques for solving the time-dependent Schrodinger equation. Using a stochastic wave-function ansatz that is based on a set of interacting single-particle conditional wave functions, we show that the difficulty of the problem becomes dominated by the number of trajectories needed to describe the process, rather than simply the number of degrees of freedom involved. This highly parallelizable technique achieves quantitative accuracy for situations in which mean-field theory drastically fails to capture qualitative aspects of the dynamics, such as quantum decoherence or the reduced nuclear probability density, using orders of magnitude fewer trajectories than a mean-field simulation. We illustrate the performance of this method for two fundamental nonequilibrium processes: a photoexcited proton-coupled electron transfer problem, and nonequilibrium dynamics in a cavity bound electron-photon system in the ultrastrong-coupling regime.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nonadiabatic Molecular Quantum Dynamics with Quantum Computers
    Ollitrault, Pauline J.
    Mazzola, Guglielmo
    Tavernelli, Ivano
    PHYSICAL REVIEW LETTERS, 2020, 125 (26)
  • [32] Inclusion of Machine Learning Kernel Ridge Regression Potential Energy Surfaces in On-the-Fly Nonadiabatic Molecular Dynamics Simulation
    Hu, Deping
    Xie, Yu
    Li, Xusong
    Li, Lingyue
    Lan, Zhenggang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (11): : 2725 - 2732
  • [33] Nonadiabatic potential-energy surfaces by constrained density-functional theory
    Behler, Joerg
    Delley, Bernard
    Reuter, Karsten
    Scheffler, Matthias
    PHYSICAL REVIEW B, 2007, 75 (11):
  • [34] Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces
    Gardner, James
    Habershon, Scott
    Maurer, Reinhard J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (31): : 15257 - 15270
  • [35] Probing Quantum Dynamics of Elementary Chemical Reactions via Accurate Potential Energy Surfaces
    Yang, Xueming
    Zhang, Dong Hui
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2013, 227 (9-11): : 1247 - 1265
  • [36] Direct grid-based quantum dynamics on propagated diabatic potential energy surfaces
    Richings, Gareth W.
    Habershon, Scott
    CHEMICAL PHYSICS LETTERS, 2017, 683 : 228 - 233
  • [37] Nonadiabatic Derivative Couplings Calculated Using Information of Potential Energy Surfaces without Wavefunctions: Ab Initio and Machine Learning Implementations
    Chen, Wen-Kai
    Wang, Sheng-Rui
    Liu, Xiang-Yang
    Fang, Wei-Hai
    Cui, Ganglong
    MOLECULES, 2023, 28 (10):
  • [38] Semiclassical nonadiabatic dynamics with quantum trajectories
    Rassolov, VA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2843 - U2843
  • [39] Semiclassical description of nonadiabatic quantum dynamics
    Stock, G
    Thoss, M
    PHYSICAL REVIEW LETTERS, 1997, 78 (04) : 578 - 581
  • [40] Quantum chemical potential energy surfaces for HXeCl
    Johansson, M
    Hotokka, M
    Pettersson, M
    Räsänen, M
    CHEMICAL PHYSICS, 1999, 244 (01) : 25 - 34