Multiple imputation for categorical time series

被引:23
|
作者
Halpin, Brendan [1 ]
机构
[1] Univ Limerick, Dept Sociol, Limerick, Ireland
来源
STATA JOURNAL | 2016年 / 16卷 / 03期
关键词
st0445; mict_impute; mict_prep; mict_model_gap; mitt model initial; mict_model_terminal; multiple imputation; categorical time series; FAMILY LIFE COURSES; MISSING VALUES; WORK;
D O I
10.1177/1536867X1601600303
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
The mict package provides a method for multiple imputation of categorical time-series data (such as life course or employment status histories) that preserves longitudinal consistency, using a monotonic series of imputations. It allows flexible imputation specifications with a model appropriate to the target variable (mlogit, ologit, etc.). Where transitions in individual units' data are substantially less frequent than one per period and where missingness tends to be consecutive (as is typical of life course data), mict produces imputations with better longitudinal consistency than mi impute or ice.
引用
收藏
页码:590 / 612
页数:23
相关论文
共 50 条
  • [31] Imputation of clinical covariates in time series
    Dimitris Bertsimas
    Agni Orfanoudaki
    Colin Pawlowski
    Machine Learning, 2021, 110 : 185 - 248
  • [32] Latent class based multiple imputation approach for missing categorical data
    Gebregziabher, Mulugeta
    DeSantis, Stacia M.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3252 - 3262
  • [33] Multiple Imputation with Principal Components for Non-Normal Categorical Data
    Kim, Youngmin
    Lee, Jaehoon
    Little, Todd D.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2020, 56 (01) : 165 - 166
  • [34] Investigating the Performance of a Variation of Multiple Correspondence Analysis for Multiple Imputation in Categorical Data Sets
    Johané Nienkemper-Swanepoel
    Michael J von Maltitz
    Journal of Classification, 2017, 34 : 384 - 398
  • [35] Coping with Nonstationarity in Categorical Time Series
    Mcgee, Monnie
    Harris, Ian
    JOURNAL OF PROBABILITY AND STATISTICS, 2012, 2012
  • [36] Regression theory for categorical time series
    Fokianos, K
    Kedem, B
    STATISTICAL SCIENCE, 2003, 18 (03) : 357 - 376
  • [37] On categorical time series models with covariates
    Fokianos, Konstantinos
    Truquet, Lionel
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (09) : 3446 - 3462
  • [38] GAUSSIAN PROCESS IMPUTATION OF MULTIPLE FINANCIAL SERIES
    de Wolff, Taco
    Cuevas, Alejandro
    Tobar, Felipe
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8444 - 8448
  • [39] Bayesian multiple imputation for large-scale categorical data with structural zeros
    Manrique-Vallier, Daniel
    Reiter, Jerome P.
    SURVEY METHODOLOGY, 2014, 40 (01) : 125 - 134
  • [40] Multiple imputation methods for handling missing values in a longitudinal categorical variable with restrictions on transitions over time: a simulation study
    De Silva, Anurika Priyanjali
    Moreno-Betancur, Margarita
    De Livera, Alysha Madhu
    Lee, Katherine Jane
    Simpson, Julie Anne
    BMC MEDICAL RESEARCH METHODOLOGY, 2019, 19 (1)