Introduction to Optimal Control for Discrete Time Models with an Application to Disease Modeling

被引:0
|
作者
Ding, Wandi [1 ]
Lenhart, Suzanne [2 ]
机构
[1] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
This paper serves as an introduction to the theory of optimal control applied to systems of discrete time models with an emphasis on disease models. We outline the steps in solving such optimal control problems and discuss the necessary conditions. A simple disease example provides detailed methodology in charactering the optimal control through the use of Pontryagin's Maximum Principle. Numerical results are given to illustrate several cases.
引用
收藏
页码:109 / +
页数:3
相关论文
共 50 条
  • [42] ON THE DISCRETE TIME-OPTIMAL REGULAR CONTROL PROBLEM
    FAHMY, MM
    HANAFY, AAR
    SAKR, MF
    INFORMATION AND CONTROL, 1980, 44 (03): : 223 - 235
  • [43] Quantized optimal control of discrete-time systems
    Corona, Daniele
    Giua, Alessandro
    Seatzu, Carla
    ETFA 2005: 10TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION, VOL 1, PTS 1 AND 2, PROCEEDINGS, 2005, : 273 - 276
  • [44] Discrete Time Optimal Control Problems with Infinite Horizon
    Prazak, Pavel
    Fronckova, Katerina
    39TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS (MME 2021), 2021, : 405 - 410
  • [45] OPTIMAL-CONTROL DISCRETE-TIME-SYSTEMS
    DOLEZAL, J
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1988, 113 : 22 - 28
  • [46] DISCRETE APPROXIMATION OF A TIME-OPTIMAL CONTROL PROBLEM
    KOHLER, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (04): : T246 - T247
  • [47] DISCRETE TIME MATRIX RICCATI EQUATION OF OPTIMAL CONTROL
    CAINES, PE
    MAYNE, DQ
    INTERNATIONAL JOURNAL OF CONTROL, 1970, 12 (05) : 785 - &
  • [48] Agreeable solutions of discrete time optimal control problems
    Alexander J. Zaslavski
    Optimization Letters, 2014, 8 : 2173 - 2184
  • [49] Unified Discrete Time Optimal Control for MEMS Gyroscopes
    Zheng, Qing
    Li, Bo
    Xu, Weifeng
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1548 - 1553
  • [50] Optimal discrete time control of antiangiogenic tumor therapy
    Drexler, Daniel Andras
    Sapi, Johanna
    Kovacs, Levente
    IFAC PAPERSONLINE, 2017, 50 (01): : 13504 - 13509