Confined Growth of Nano-Na3V2(PO4)3 in Porous Carbon Framework for High-Rate Na-Ion Storage

被引:60
|
作者
Zhu, Qizhen [1 ]
Chang, Xiaqing [1 ]
Sun, Ning [1 ]
Chen, Renjie [2 ]
Zhao, Yineng [1 ,3 ]
Xu, Bin [1 ]
Wu, Feng [2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing Key Lab Electrochem Proc & Technol Mat, Beijing 100029, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[3] Univ Rochester, Mat Sci Program, Rochester, NY 14627 USA
关键词
nano-Na3V2(PO4)(3); confined growth; porous carbon; Na-ion batteries; rate performance; SUPERIOR RATE CAPABILITY; HIGH-PERFORMANCE CATHODE; LIFE-SPAN CATHODE; HIGH-POWER; COATED NA3V2(PO4)(3); CYCLING STABILITY; FACILE SYNTHESIS; ANODE MATERIALS; DOPED CARBON; GRAPHENE;
D O I
10.1021/acsami.8b19614
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoscale Na3V2(PO4)(3) particles are grown in the interconnected conductive framework via a simple sol-gel method with the assistance of a hierarchical porous carbon. The porous carbon with strong adsorption ability absorbs the Na3V2(PO4)(3) reactants from the aqueous solution during the sol-gel process. After crystallization, the Na3V2(PO4)(3) particles are grown in the carbon pores with a spatially confined effect. Due to the pore size confinement, the Na3V2(PO4)(3) particles are limited to nanoscale size and prevented from aggregation. Furthermore, the carbon matrix provides the electric conductive framework and the unfilled pores offer interconnected ion transport channels as well as capacitive contribution, which are beneficial for tolerating high current attack. As a result, the pore-confined nano-Na3V2(PO4)(3) in the carbon framework exhibits high Na-ion storage capacity (116.2 mAh g(-1) at 0.2 C), excellent long-term cycling stability (capacity retention of 82.1% after 10 000 cycles), and especially, outstanding high-rate performance (80.1, 60.6, and 45.7 mAh g(-1) at 50, 75, and 100 C). The pore-confined nano-Na3V2(PO4)(3) with superior rate performance is believed to be a promising candidate for Na-ion batteries, and the preparation method based on confined growth in porous carbon framework provides a simple and effective strategy for high-rate electrode material design.
引用
收藏
页码:3107 / 3115
页数:9
相关论文
共 50 条
  • [21] Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating
    Guo, Biao
    Diao, Wenyu
    Yuan, Tingting
    Liu, Yuan
    Yuan, Qi
    Li, Guannan
    Yang, Jingang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (19) : 16325 - 16329
  • [22] Enhanced electrochemical performance of Na3V2(PO4)2F3 for Na-ion batteries with nanostructure and carbon coating
    Biao Guo
    Wenyu Diao
    Tingting Yuan
    Yuan Liu
    Qi Yuan
    Guannan Li
    Jingang Yang
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 16325 - 16329
  • [23] Three-dimensional ordered microporous Na3V2(PO4)2F3@C/Carbon cloth as High-rate and stable flexible cathodes for Na-ion and Zn-ion batteries
    Ling, Rui
    Zhao, Shuting
    Yang, Chao
    Qi, Wentao
    APPLIED SURFACE SCIENCE, 2023, 620
  • [24] Superior Na-storage performance of Na3V2(PO4)3/C-Ag composites as cathode material for Na-ion battery
    Hong, Xianda
    Huang, Xiaobing
    Ren, Yurong
    Wang, Haiyan
    Ding, Xiang
    Jin, Junling
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 822
  • [25] A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries
    Jian, Zelang
    Sun, Yang
    Ji, Xiulei
    CHEMICAL COMMUNICATIONS, 2015, 51 (29) : 6381 - 6383
  • [26] Construction and Operating Mechanism of High-Rate Mo-Doped Na3V2(PO4)3@C Nanowires toward Practicable Wide-Temperature-Tolerance Na-Ion and Hybrid Li/Na-Ion Batteries
    Liang, Longwei
    Li, Xiaoying
    Zhao, Fei
    Zhang, Jinyang
    Liu, Yang
    Hou, Linrui
    Yuan, Changzhou
    ADVANCED ENERGY MATERIALS, 2021, 11 (21)
  • [27] Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method
    Shuo Bao
    Ying-ying Huang
    Shao-hua Luo
    Jin-lin Lu
    Ionics, 2020, 26 : 5011 - 5018
  • [28] Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3 as Cathode for Na-Ion Batteries
    Aragon, M. J.
    Lavela, P.
    Ortiz, G. F.
    Tirado, J. L.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) : A3077 - A3083
  • [29] Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method
    Bao, Shuo
    Huang, Ying-ying
    Luo, Shao-hua
    Lu, Jin-lin
    IONICS, 2020, 26 (10) : 5011 - 5018
  • [30] Graphene-bound Na3V2(PO4)3 film electrode with excellent cycle and rate performance for Na-ion batteries
    Chang, Xiaqing
    Zhu, Qizhen
    Sun, Ning
    Guan, Yibiao
    Wang, Ran
    Zhao, Jiashun
    Feng, Mingyu
    Xu, Bin
    ELECTROCHIMICA ACTA, 2018, 269 : 282 - 290