Lower Bounds for Eigenvalues of Elliptic Operators by Overlapping Domain Decomposition

被引:0
|
作者
Kuznetsov, Yuri A. [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we consider a new approach to estimation from below of the lowest eigenvalues of symmetric positive definite elliptic operators. The approach is based on the overlapping domain decomposition procedure and on the replacement of subdomain operators by special low rank perturbed scalar operators. The algorithm is illustrated by applications to model problems with mixed boundary conditions and strongly discontinuous coefficients.
引用
收藏
页码:307 / 314
页数:8
相关论文
共 50 条
  • [1] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Jun Hu
    Yunqing Huang
    Rui Ma
    Journal of Scientific Computing, 2016, 67 : 1181 - 1197
  • [2] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Hu, Jun
    Huang, Yunqing
    Ma, Rui
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1181 - 1197
  • [3] Lower bounds for sums of eigenvalues of elliptic operators and systems
    Ilyin, A. A.
    SBORNIK MATHEMATICS, 2013, 204 (04) : 563 - 587
  • [4] BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS
    SIGILLITO, V
    KUTTLER, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A679 - A679
  • [5] Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators
    Chen, Hua
    Luo, Peng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2831 - 2852
  • [6] Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators
    Kuznetsov, Yu. A.
    Repin, S. I.
    JOURNAL OF NUMERICAL MATHEMATICS, 2013, 21 (02) : 135 - 156
  • [7] Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators
    Hua Chen
    Peng Luo
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2831 - 2852
  • [8] Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
    Hu, Jun
    Huang, Yunqing
    Lin, Qun
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) : 196 - 221
  • [9] Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
    Jun Hu
    Yunqing Huang
    Qun Lin
    Journal of Scientific Computing, 2014, 61 : 196 - 221
  • [10] Lower and upper bounds of Dirichlet eigenvalues for totally characteristic degenerate elliptic operators
    Chen Hua
    Qiao RongHua
    Luo Peng
    Xiao DongYuan
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2235 - 2246