Lower bounds for sums of eigenvalues of elliptic operators and systems

被引:0
|
作者
Ilyin, A. A. [1 ,2 ]
机构
[1] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow, Russia
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Kharkevich Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
Berezin-Li-Yau inequalities; Stokes operator; polyharmonic operator; buckling problem; LIEB-THIRRING INEQUALITIES; SPECTRUM;
D O I
10.1070/SM2013v204n04ABEH004312
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two-term lower bounds of Berzin-Li-Yau type are obtained for the sums of eigenvalues of elliptic operators and systems with constant coefficients and Dirichlet boundary conditions. The polyharmonic operator, the Stokes system and its generalizations, the two-dimensional buckling problem, and also the Klein-Gordon operator are considered. Bibliography: 32 titles.
引用
收藏
页码:563 / 587
页数:25
相关论文
共 50 条
  • [1] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Jun Hu
    Yunqing Huang
    Rui Ma
    Journal of Scientific Computing, 2016, 67 : 1181 - 1197
  • [2] Guaranteed Lower Bounds for Eigenvalues of Elliptic Operators
    Hu, Jun
    Huang, Yunqing
    Ma, Rui
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1181 - 1197
  • [3] BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS
    SIGILLITO, V
    KUTTLER, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A679 - A679
  • [4] Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators
    Chen, Hua
    Luo, Peng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2831 - 2852
  • [5] Guaranteed lower bounds of the smallest eigenvalues of elliptic differential operators
    Kuznetsov, Yu. A.
    Repin, S. I.
    JOURNAL OF NUMERICAL MATHEMATICS, 2013, 21 (02) : 135 - 156
  • [6] Lower Bounds for Eigenvalues of Elliptic Operators by Overlapping Domain Decomposition
    Kuznetsov, Yuri A.
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 307 - 314
  • [7] Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators
    Hua Chen
    Peng Luo
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2831 - 2852
  • [8] On sums of eigenvalues of elliptic operators on manifolds
    El Soufi, Ahmad
    Harrell, Evans M., II
    Ilias, Said
    Stubbe, Joachim
    JOURNAL OF SPECTRAL THEORY, 2017, 7 (04) : 985 - 1022
  • [9] Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
    Hu, Jun
    Huang, Yunqing
    Lin, Qun
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 61 (01) : 196 - 221
  • [10] Lower Bounds for Eigenvalues of Elliptic Operators: By Nonconforming Finite Element Methods
    Jun Hu
    Yunqing Huang
    Qun Lin
    Journal of Scientific Computing, 2014, 61 : 196 - 221