UPC plus plus : A High-Performance Communication Framework for Asynchronous Computation

被引:26
|
作者
Bachan, John [1 ]
Baden, Scott B. [1 ]
Hofmeyr, Steven [1 ]
Jacquelin, Mathias [1 ]
Kamil, Amir [1 ,2 ]
Bonachea, Dan [1 ]
Hargrove, Paul H. [1 ]
Ahmed, Hadia [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
关键词
Asynchronous; PGAS; RMA; RPC; Exascale;
D O I
10.1109/IPDPS.2019.00104
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
UPC++ is a C++ library that supports high-performance computation via an asynchronous communication framework. This paper describes a new incarnation that differs substantially from its predecessor, and we discuss the reasons for our design decisions. We present new design features, including future-based asynchrony management, distributed objects, and generalized Remote Procedure Call (RPC). We show microbenchmark performance results demonstrating that one-sided Remote Memory Access (RMA) in UPC++ is competitive with MPI-3 RMA; on a Cray XC40 UPC++ delivers up to a 25% improvement in the latency of blocking RMA put, and up to a 33% bandwidth improvement in an RMA throughput test. We showcase the benefits of UPC++ with irregular applications through a pair of application motifs, a distributed hash table and a sparse solver component. Our distributed hash table in UPC++ delivers near-linear weak scaling up to 34816 cores of a Cray XC40. Our UPC++ implementation of the sparse solver component shows robust strong scaling up to 2048 cores, where it outperforms variants communicating using MPI by up to 3.1x. UPC++ encourages the use of aggressive asynchrony in low-overhead RMA and RPC, improving programmer productivity and delivering high performance in irregular applications.
引用
收藏
页码:963 / 973
页数:11
相关论文
共 50 条
  • [41] Thrill: High-Performance Algorithmic Distributed Batch Data Processing with C plus
    Bingmann, Timo
    Axtmann, Michael
    Joebstl, Emanuel
    Lamm, Sebastian
    Huyen Chau Nguyen
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 172 - 183
  • [42] Efficient Communication/Computation Overlap with MPI plus OpenMP Runtimes Collaboration
    Sergent, Marc
    Dagrada, Mario
    Carribault, Patrick
    Jaeger, Julien
    Perache, Marc
    Papaure, Guillaume
    EURO-PAR 2018: PARALLEL PROCESSING, 2018, 11014 : 560 - 572
  • [43] FRC: A High-Performance Concurrent Parallel Deferred Reference Counter for C plus
    Tripp, Charles
    Hyde, David
    Grossman-Ponemon, Benjamin
    ACM SIGPLAN NOTICES, 2018, 53 (05) : 14 - 28
  • [44] FRC: A High-Performance Concurrent Parallel Deferred Reference Counter for C plus
    Tripp, Charles
    Hyde, David
    Grossman-Ponemon, Benjamin
    PROCEEDINGS OF THE 2018 ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON MEMORY MANAGEMENT (ISMM'18), 2018, : 14 - 28
  • [45] Imprecise data computation for high performance asynchronous processors
    Lee, JG
    Kim, E
    Lee, DI
    PROCEEDINGS OF THE ASP-DAC 2001: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE 2001, 2001, : 261 - 266
  • [46] Pool-based anonymous communication framework for high-performance computing
    Tran, Minh-Triet
    Nguyen, Thanh-Trung
    Duong, Anh-Duc
    Echizen, Isao
    JOURNAL OF SUPERCOMPUTING, 2011, 55 (02): : 246 - 268
  • [47] Pool-based anonymous communication framework for high-performance computing
    Minh-Triet Tran
    Thanh-Trung Nguyen
    Anh-Duc Duong
    Isao Echizen
    The Journal of Supercomputing, 2011, 55 : 246 - 268
  • [48] A high-performance asynchronous FPGA: Test results
    Fang, D
    Teifel, J
    Manohar, R
    FCCM 2005: 13TH ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, PROCEEDINGS, 2005, : 271 - 272
  • [49] Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing
    Smajlovic, Haris
    Shajii, Ariya
    Berger, Bonnie
    Cho, Hyunghoon
    Numanagic, Ibrahim
    GENOME BIOLOGY, 2023, 24 (01)
  • [50] Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing
    Haris Smajlović
    Ariya Shajii
    Bonnie Berger
    Hyunghoon Cho
    Ibrahim Numanagić
    Genome Biology, 24