STUDY OF FOUR YOUNG TeV PULSAR WIND NEBULAE WITH A SPECTRAL EVOLUTION MODEL

被引:66
|
作者
Tanaka, Shuta J. [1 ]
Takahara, Fumio [1 ]
机构
[1] Osaka Univ, Dept Earth & Space Sci, Grad Sch Sci, Osaka 5600043, Japan
来源
ASTROPHYSICAL JOURNAL | 2011年 / 741卷 / 01期
关键词
ISM: individual objects (G21.5-0.9; G54.1+0.3; Kes; 75; G0.9+0.1); pulsars: general; radiation mechanisms: non-thermal; SUPERNOVA REMNANT G21.5-0.9; X-RAY OBSERVATIONS; ENERGY GAMMA-RAYS; PSR J1833-1034; CHANDRA OBSERVATIONS; MAGNETIC-FIELD; GALACTIC PLANE; RADIO-SOURCES; CRAB-NEBULA; XMM-NEWTON;
D O I
10.1088/0004-637X/741/1/40
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study four young pulsar wind nebulae (PWNe) detected in TeV gamma-rays, G21.5-0.9, G54.1+0.3, Kes 75, and G0.9+0.1, using the spectral evolution model developed and applied to the Crab Nebula in our previous work. We model the evolution of the magnetic field and the particle distribution function inside a uniformly expanding PWN considering a time-dependent injection from the pulsar and radiative and adiabatic losses. Considering uncertainties in the interstellar radiation field (ISRF) and their distance, we study two cases for each PWN. Because TeV PWNe have a large TeV gamma-ray to X-ray flux ratio, the magnetic energy of the PWNe accounts for only a small fraction of the total energy injected (typically a few x 10(-3)). The gamma-ray emission is dominated by inverse Compton scattering off the infrared photons of the ISRF. A broken power-law distribution function for the injected particles reproduces the observed spectrum well, except for G0.9+0.1. For G0.9+0.1, we do not need a low-energy counterpart because adiabatic losses alone are enough to reproduce the radio observations. High-energy power-law indices at injection are similar (2.5-2.6), while low-energy power-law indices range from 1.0 to 1.6. The lower limit of the particle injection rate indicates that the pair multiplicity is larger than 10(4). The corresponding upper limit of the bulk Lorentz factor of the pulsar winds is close to the break energy of the broken power-law injection, except for Kes 75. The initial rotational energy and the magnetic energy of the pulsars seem anticorrelated, although the statistics are poor.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] From young to old: The evolutionary path of Pulsar Wind Nebulae
    Olmi, Barbara
    Bucciantini, Niccolo
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2023, 40
  • [22] High-energy flux evolution of Pulsar Wind Nebulae
    Mattana, F.
    Falanga, M.
    Goetz, D.
    Terrier, R.
    Esposito, P.
    Pellizzoni, A.
    De Luca, A.
    Marandon, V.
    Goldwurrn, A.
    Caraveo, P.
    HIGH ENERGY GAMMA-RAY ASTRONOMY, 2009, 1085 : 308 - +
  • [23] A high-sigma model of pulsar wind nebulae
    Lyutikov, Maxim
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 405 (03) : 1809 - 1815
  • [24] THE EVOLUTION OF THE γ- AND X-RAY LUMINOSITIES OF PULSAR WIND NEBULAE
    Mattana, F.
    Falanga, M.
    Goetz, D.
    Terrier, R.
    Esposito, P.
    Pellizzoni, A.
    De Luca, A.
    Marandon, V.
    Goldwurm, A.
    Caraveo, P. A.
    ASTROPHYSICAL JOURNAL, 2009, 694 (01): : 12 - 17
  • [25] Searching for High-Energy Neutrino Emission from TeV Pulsar Wind Nebulae
    Liu, Qinrui
    Kheirandish, Ali
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [26] Evolution of High-energy Electron Distribution in Pulsar Wind Nebulae
    YiMing Liu
    HouDun Zeng
    YuLiang Xin
    SiMing Liu
    Yi Zhang
    ResearchinAstronomyandAstrophysics, 2024, 24 (07) : 201 - 217
  • [27] Evolution of High-energy Electron Distribution in Pulsar Wind Nebulae
    Liu, Yi-Ming
    Zeng, Hou-Dun
    Xin, Yu-Liang
    Liu, Si-Ming
    Zhang, Yi
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (07)
  • [28] IceCube Search for High-energy Neutrino Emission from TeV Pulsar Wind Nebulae
    Aartsen, M. G.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Alispach, C.
    Andeen, K.
    Anderson, T.
    Ansseau, I.
    Anton, G.
    Arguelles, C.
    Auffenberg, J.
    Axani, S.
    Backes, P.
    Bagherpour, H.
    Bai, X.
    Balagopal V., A.
    Barbano, A.
    Barwick, S. W.
    Bastian, B.
    Baum, V.
    Baur, S.
    Bay, R.
    Beatty, J. J.
    Becker, K. -H.
    Tjus, J. Becker
    BenZvi, S.
    Berley, D.
    Bernardini, E.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Blaufuss, E.
    Blot, S.
    Bohm, C.
    Boerner, M.
    Boeser, S.
    Botner, O.
    Boettcher, J.
    Bourbeau, E.
    Bourbeau, J.
    Bradascio, F.
    Braun, J.
    Bron, S.
    Brostean-Kaiser, J.
    Burgman, A.
    Buscher, J.
    Busse, R. S.
    Carver, T.
    ASTROPHYSICAL JOURNAL, 2020, 898 (02):
  • [29] The effects of spin-down on the structure and evolution of pulsar wind nebulae
    Bucciantini, N. (niccolo@arcetri.astro.it), 1600, EDP Sciences (422):
  • [30] Model of dynamical structures in synchrotron images of pulsar wind nebulae
    Petrov, A. E.
    Bykov, A. M.
    17TH RUSSIAN YOUTH CONFERENCE ON PHYSICS AND ASTRONOMY (PHYSICA.SPB/2014), 2015, 661