On-chip phase-change photonic memory and computing

被引:2
|
作者
Cheng, Zengguang [1 ]
Rios, Carlos [1 ]
Youngblood, Nathan [1 ]
Wright, C. David [2 ]
Pernice, Wolfram H. P. [3 ]
Bhaskaran, Harish [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[2] Univ Exeter, Dept Engn, Exeter EX4 4QF, Devon, England
[3] Univ Munster, Inst Phys, Heisenbergstr 11, D-48149 Munster, Germany
来源
ACTIVE PHOTONIC PLATFORMS IX | 2017年 / 10345卷
基金
英国工程与自然科学研究理事会;
关键词
On-chip photonics; Phase-change materials; memory; brain-inspired computing; synapse;
D O I
10.1117/12.2272127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of 'big data' and 'deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Wavelength tunable resonant phase-change synaptic weights for photonic neuromorphic computing
    Cui, Yihao
    Gholipour, Behrad
    EMERGING TOPICS IN ARTIFICIAL INTELLIGENCE (ETAI) 2022, 2022, 12204
  • [32] Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications
    Carrillo, Santiago G-C
    Gemo, Emanuele
    Li, Xuan
    Youngblood, Nathan
    Katumba, Andrew
    Bienstman, Peter
    Pernice, Wolfram
    Bhaskaran, Harish
    Wright, C. David
    APL MATERIALS, 2019, 7 (09):
  • [33] OPTICAL MEMORY Phase-change memory
    Kuramochi, Eiichi
    Notomi, Masaya
    NATURE PHOTONICS, 2015, 9 (11) : 712 - 714
  • [34] A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices
    Gemo, E.
    Faneca, J.
    Carrillo, S. G. -C.
    Baldycheva, A.
    Pernice, W. H. P.
    Bhaskaran, H.
    Wright, C. D.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (11)
  • [35] A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices
    Wright, C.D. (david.wright@exeter.ac.uk), 1600, American Institute of Physics Inc. (129):
  • [36] Phase-change memory materials
    Kraft, Arno
    CHEMISTRY & INDUSTRY, 2022, 86 (01) : 43 - 43
  • [37] Quasicrystalline phase-change memory
    Lee, Eun-Sung
    Yoo, Joung E.
    Yoon, Du S.
    Kim, Sung D.
    Kim, Yongjoo
    Hwang, Soobin
    Kim, Dasol
    Jeong, Hyeong-Chai
    Kim, Won T.
    Chang, Hye J.
    Suh, Hoyoung
    Ko, Dae-Hong
    Cho, Choonghee
    Choi, Yongjoon
    Kim, Do H.
    Cho, Mann-Ho
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [38] Interfacial phase-change memory
    Simpson, R. E.
    Fons, P.
    Kolobov, A. V.
    Fukaya, T.
    Krbal, M.
    Yagi, T.
    Tominaga, J.
    NATURE NANOTECHNOLOGY, 2011, 6 (08) : 501 - 505
  • [39] Multi-band reprogrammable phase-change metasurface spectral filters for on-chip spectrometers
    Zheng, Qilin
    Liang, Li
    Quan, Yunan
    Nan, Xianghong
    Sun, Dongqin
    Tan, Yongsheng
    Hu, Xin
    Yu, Qing
    Fang, Zebo
    OPTICS EXPRESS, 2024, 32 (07): : 11548 - 11559
  • [40] Phase-change memory architectures
    Asadinia, Marjan
    Sarbazi-Azad, Hamid
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : 29 - 48