ON THE CLASSIFICATION OF Z4-CODES

被引:2
|
作者
Araya, Makoto [1 ]
Harada, Masaaki [2 ]
Ito, Hiroki [3 ]
Saito, Ken [2 ]
机构
[1] Shizuoka Univ, Dept Comp Sci, Hamamatsu, Shizuoka 4328011, Japan
[2] Tohoku Univ, Res Ctr Pure & Appl Math, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[3] Koki Consultant Inc, Kitakata 9660902, Japan
关键词
Z(4)-code; generator matrix; weight enumerator; CODES;
D O I
10.3934/amc.2017054
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note, we study the classification of Z(4)-codes. For some special cases (k(1), k(2)), by hand, we give a classification of Z(4)-codes of length n and type 4(k1) 2(k2) satisfying a certain condition. Our exhaustive computer search completes the classification of Z(4)-codes of lengths up to 7.
引用
收藏
页码:747 / 756
页数:10
相关论文
共 50 条
  • [21] A Note on New Near-Extremal Type I Z4-Codes of Length 48
    Mravic, Matteo
    Rukavina, Sanja
    MATHEMATICS, 2025, 13 (06)
  • [23] New extremal Type II Z4-codes of length 32 obtained from Hadamard matrices
    Ban, Sara
    Crnkovic, Dean
    Mravic, Matteo
    Rukavina, Sanja
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [24] Classification of the Z2Z4-Linear Hadamard Codes and Their Automorphism Groups
    Krotov, Denis S.
    Villanueva, Merce
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 887 - 894
  • [25] On the Automorphism Groups of the Z2Z4-Linear Hadamard Codes and Their Classification
    Krotov, Denis S.
    Villanueva, Merce
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 237 - 243
  • [26] Codes over Z4 + νZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 422 - 427
  • [27] Z4Z4Z4-additive cyclic codes are asymptotically good
    Dinh, Hai Q.
    Yadav, Bhanu Pratap
    Pathak, Sachin
    Prasad, Abhyendra
    Upadhyay, Ashish Kumar
    Yamaka, Woraphon
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024, 35 (04) : 485 - 505
  • [28] Codes over Z4
    Helleseth, T
    COMPUTATIONAL DISCRETE MATHEMATICS: ADVANCED LECTURES, 2001, 2122 : 47 - 55
  • [29] Z2Z4Z8-Cyclic codes
    Aydogdu, Ismail
    Gursoy, Fatmanur
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 327 - 341
  • [30] QUADRATIC RESIDUE CODES OVER Z4 + u1Z4 + ... + utZ4 AND QUANTUM CODES FROM THESE CODES
    Karbaski, Arezoo Soufi
    Samei, Karim
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (03): : 111 - 122